• Title/Summary/Keyword: Soil bacteria

Search Result 1,330, Processing Time 0.032 seconds

Soil Microflora and Microfauna in 29 Years of N-P-K Fertilizer Omission Plot (N-P-K 비료 29년 결제구에서의 미생물상 연구)

  • Jo Chae-Hee;Yu Sun-Nam;Kim Dong-Geun
    • Research in Plant Disease
    • /
    • v.12 no.2
    • /
    • pp.108-114
    • /
    • 2006
  • This study was conducted to elucidate the interactions among soil microorganisms in a special field where one, two or three of N, P, K fertilizers were continuously not applied for 29 years. Crop yield (barley, soybean), soil chemical properties and microflora and microfauna including nematodes, nematophagous fungi, actinomycetes, bacteria, and fungi were examined for two years. Tylenchorhynchus sp. was the most important plant-parasitic nematode (range $11{\sim}642/300 cm^3$ soil) followed by Pratylenchus sp. and Helicotylenchus sp. Among nematophagous fungi, Monacrosporium spp. was the most frequently found followed by Harposporium sp. and Cystopage sp. In general, plots treated with phosphate fertilizer yielded more, had more nematodes, bacteria and actinomycetes. In contrast, total fungal population densities including nematophagous fungi, Cystopage sp. and Harposporium sp. were in reverse; they were more abundant in the plots with lower phosphate contents. Phosphate and pH are positively correlated and two most important determining factors for the population density of soil organisms under investigation. According to correlation analysis, Ca, Mg, and $SiO_2$ contents in soil and population densities of Tylenchorhynchus sp., saprophitic nematodes, actinomycetes, and bacteria were positively correlated with pH, but were negatively correlated with fungal population densities. We hope that the study will add an additional knowledges to understand our mysterious underworld.

Impacts of Soil Type on Microbial Community from Paddy Soils in Gyeongnam Province (경남지역 논 토양 유형에 따른 미생물 군집 변화)

  • Lee, Young-Han;Ahn, Byung-Koo;Lee, Seong-Tae;Shin, Min-A;Kim, Eun-Seok;Song, Won-Doo;Sonn, Yeon-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1164-1168
    • /
    • 2011
  • This study evaluated the soil microbial communities by fatty acid methyl ester (FAME) method in soils (6 sites for immatured paddy, 9 sites for normal paddy, and 5 sites for sandy paddy) in Gyeongnam Province. The soil microbial biomass carbon content in normal and sandy paddy were 1,235 and $441mg\;kg^{-1}$, respectively, showing the soil microbial biomass carbon content in normal paddy was higher than that in sandy paddy. The soil organic matter contents $33g\;kg^{-1}$ of immatured and normal paddy were higher than sandy paddy $18g\;kg^{-1}$ (p<0.05). The communities of total bacteria and Gram-negative bacteria in normal paddy were significantly higher than those in sandy paddy (p<0.05). Total bacteria communities should be considered as a potential responsible factor for the obvious microbial community differentiation.

Effect of Soil surface Soil Management Practices on Microflora in Volcanic Ash Soils of Citrus Orchard (화산회토 감귤원의 표토관리방법이 토양 미생물상에 미치는 영향)

  • Joa, Jae-Ho;Lim, Han-Cheol;Koh, Sang-wook;Hyun, Hae-Nam
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.3
    • /
    • pp.165-170
    • /
    • 2004
  • This study was conducted to investigate the effect of different surface soil management practices on soil microflora in volcanic ash soils of citrus orchard. Soil samples were collected from citrus orchards of clean cultivation, grass sod, and grass mulch system in May and September 1997. Soil chemical properties, populations of various microorganisms, enzyme activities, microbial biomass C were analyzed. Average soil pH were 4.7, and average nitrogen and organic matter contents were 6 and $140.2g\;kg^{-1}$, respectively. Aerobic bacteria were distributed at $26,2-47.3{\times}10^6cfu\;g^{-1}$ level. Among the aerobic bacteria Pseudomonas spp., Rhizobium spp., and thermophilic Bacillus spp. were dominant in most of the investigated orchard soils. Density of actinomycetes were low at $1.8-84.6{\times}10^5cfu\;g^{-1}$ level. Fungi were distributed at $26.4-182.1{\times}10^5cfu\;g^{-1}$ level and the density was higher in grass mulch and sward sites. In september, phosphomonoesterase activity was high at $239.6{\mu}g\;PNP\;g\;soil^{-1}\;h^{-1}$ in clean cultivated citrus orchards. Soil cellulase activity were higher at $602.6{\mu}g\;GE\;g\;soil^{-1}$\;24\;h^{-1}$ in grass sward cultivation than any other soil management practices. Soil microbial biomass C was higher in grass mulch cultivated orchards.

Studies on Phytotoxin in Intensively Cultivated Upland Crops -II. Population and identification of soil microorganisms in rhizosphere of upland crops (연작재배지토양(連作栽培地土壤)의 식물독소(植物毒素)에 관(關)한 연구(硏究) -제(第) II 보(報). 작물근권토양(作物根圈土壤)의 미생물분포(微生物分布)에 관(關)한 연구(硏究))

  • Lee, Sang-Kyu;Suh, Jang-Sun;Kim, Young-Sig;Park, Jun-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.2
    • /
    • pp.179-183
    • /
    • 1987
  • A series of laboratory experiments were conducted to find out the populations and identification of soil bacteria, fungi and their B/F ratio in the rhizosphere of intensively cultivatad hot-pepper, garlic, flower plants, chinese cabbage, and round onion. The results obtained are summarized as follows: 1. The number of bacteria, fungi and their B/F ratio are remarkably lower than that of normal paddy soils. 2. Nitrate reducers and bacteria which utilized simple sugars for their sole carbon source are predominated in the rhizosphere of intensively cultivated upland crops. 3. Alkaligenetic bacteria predominate in rhizosphere of garlic and tomato cultivated upland soils. 4. Genera of Pseudomonas, Xanthomonas, Bacillus, Arthrobacter, and Achromobacterium are the most common species in the rhizosphere of intensively cultivated upland crops and flower plants. 5. Phytotoxin producers such as Stachybotris sp. were identified in all rhizospheres of intensively cultivated upland crops and flower plants. 6. Most common and highest population of soil fungi were obtained for the genera of Penicillium, Humicola, Phoma and Aspergillus in the rhizosphere of intensively cultivated upland crops and flower plants.

  • PDF

Role of Diazotrophic Bacteria in Biological Nitrogen Fixation and Plant Growth Improvement

  • Shin, Wansik;Islam, Rashedul;Benson, Abitha;Joe, Manoharan Melvin;Kim, Kiyoon;Gopal, Selvakumar;Samaddar, Sandipan;Banerjee, Somak;Sa, Tongmin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.1
    • /
    • pp.17-29
    • /
    • 2016
  • Though there is an abundant supply of nitrogen in the atmosphere, it cannot be used directly by the biological systems since it has to be combined with the element hydrogen before their incorporation. This process of nitrogen fixation ($N_2$-fixation) may be accomplished either chemically or biologically. Between the two elements, biological nitrogen fixation (BNF) is a microbiological process that converts atmospheric di-nitrogen ($N_2$) into plant-usable form. In this review, the genetics and mechanism of nitrogen fixation including genes responsible for it, their types and role in BNF are discussed in detail. Nitrogen fixation in the different agricultural systems using different methods is discussed to understand the actual rather than the potential $N_2$-fixation procedure. The mechanism by which the diazotrophic bacteria improve plant growth apart from nitrogen fixation such as inhibition of plant ethylene synthesis, improvement of nutrient uptake, stress tolerance enhancement, solubilization of inorganic phosphate and mineralization of organic phosphate is also discussed. Role of diazotrophic bacteria in the enhancement of nitrogen fixation is also dealt with suitable examples. This mini review attempts to address the importance of diazotrophic bacteria in nitrogen fixation and plant growth improvement.

Ubiquitous Presence and Activity of Thiosulfate Oxidizing Bacteria in Rhizosphere of Economically Important Crop Plants of Korea (국내 작물 근권에 서식하는 황산화세균의 분포와 합성)

  • Yim, Woo-Jong;Anandham, R.;Gandhi, P. Indira;Hong, In-Soo;Islam, M.R.;Trivedi, P.;Madhaiyan, M.;Han, Gwang-Hyun;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.1
    • /
    • pp.9-17
    • /
    • 2008
  • The presence of thiosulfate oxidizing bacteria was examined in rhizosphere soils of 19 economically important plant species belonging to 10 different families. The results showed that the thiosulfate oxidizing bacteria were present in all the tested rhizosphere soils, and the total 32 thiosulfate oxidizing bacteria were recovered. Furthermore, the biochemical characterization revealed that 56% and 44% of the isolates belonged to the obligate chemolithoautotrophs and facultative heterotrophs, respectively. The isolates ATSR15P utilized 19.17 mM of thiosulfate and accumulated 11.65 mM of sulfate in the medium. Concurrently, the decrease in pH of the medium was observed. This study comprehensively demonstrates that the active sulfur oxidation is a ubiquitous phenomenon in the rhizosphere of crop plants in Korea.

Isolation of Soil Bacteria Secreting Raw-Starch-Digesting Enzyme and the Enzyme Production

  • Sung, Nack-Moon;Kim, Keun;Choi, Sung-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.3 no.2
    • /
    • pp.99-107
    • /
    • 1993
  • Two strains (No. 26 and 143) of bacteria which secrete both pectinase and raw-starch-digesting amylase simultaneously, were isolated from various domestic soil samples. The two bacteria were identified as Pasteurella ureae judging by their morphological and physiological characteristics. The optimal culture conditions for the production of raw-starch-digesting enzyme by the Pasteurella ureae 26 were using $NH_4NO_3$ as the nitrogen source at $37^{\circ}C$ with the pH of 7.5, and 15 of C/N ratio. Since the enzyme was produced only when raw or soluble starch was used as a carbon source, but not when glucose or other sugars was used, the enzyme was considered to be an inducible enzyme by starch. Thin layer chromatography of the hydrolyzed product of starch by the raw-starch-digesting enzyme of the strain No. 26 showed that glucose, maltose and other oligosaccharides were present in the hydrolyzates, and therefore the enzyme seemed to be ${\alpha}-amylase$. The enzyme had adsorbability onto raw com starch in the pH range of 3 to 9.

  • PDF

Antibiotics produced by anaerobic fermentation of Streptococcus sp. An-21-1 isolated from domestic soil, Fermentation and purification of antibiotics from anaerobe (국내토양에서 분리한 혐기성 세균 Streptococcus sp. An-21-1 이 생성하는 항생물질 II. 항생물질을 생성하는 혐기성 세균의 발효 및 항생물질의 분리 정제)

  • Park, Seung-chun;Yun, Hyo-in;Oh, Tae-kwang
    • Korean Journal of Veterinary Research
    • /
    • v.33 no.1
    • /
    • pp.61-69
    • /
    • 1993
  • In order to search for new antibiotics from anaerobic bacteria, a large number of samples from domestic soil were collected and processed by apropriate methods. A potential strain, Streptococcus sp. An-21-1, was found to produce antimicrobial compounds. The Results were as follows; 1. During fermentation, the bacteria grew rapidly up to 20hr, thereafter entered the death phase. The optimal temperature and pH for the bacterial growth were $37^{\circ}C$ and pH 7.0, respectively. 2. Antibiotics were purified from culture broth by solvent extraction, silica gel column chromatography and Sepadex L.H 20 column. 3. Physicochemical properties of Ap-1 and Ap-2 were similar ; Their melting points were between $234-237^{\circ}C$. Color reactions of ninhydrin, 2,7-dichlorofluorescein, 4-dimethylaminobenzaldehyde, Dragendroffs reagent and 20% $H_2SO_4$, were positive. Therefore, we assumed that these antibiotics have amine group, immine group, alkaloid, and lipid components. These were stable to heat. UV spectrophotometry showed two peaks at 210 nm and 260 nm. From above results, we assumed these antibiotics are belong to the peptide antibiotic family.

  • PDF

Methane Oxidation in Landfill Cover Soils: A Review

  • Abushammala, Mohammed F.M.;Basri, Noor Ezlin Ahmad;Irwan, Dani;Younes, Mohammad K.
    • Asian Journal of Atmospheric Environment
    • /
    • v.8 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • Migration of methane ($CH_4$) gas from landfills to the surrounding environment negatively affects both humankind and the environment. It is therefore essential to develop management techniques to reduce $CH_4$ emissions from landfills to minimize global warming and to reduce the human risks associated with $CH_4$ gas migration. Oxidation of $CH_4$ in landfill cover soil is the most important strategy for $CH_4$ emissions mitigation. $CH_4$ oxidation occurs naturally in landfill cover soils due to the abundance of methanotrophic bacteria. However, the activities of these bacteria are influenced by several controlling factors. This study attempts to review the important issues associated with the $CH_4$ oxidation process in landfill cover soils. The $CH_4$ oxidation process is highly sensitive to environmental factors and cover soil properties. The comparison of various biotic system techniques indicated that each technique has unique advantages and disadvantages, and the choice of the best technique for a specific application depends on economic constraints, treatment efficiency and landfill operations.

Isolation and Identification of Antimicrobial Agent Producing Microorganisms and Sensitive Strain from Soil (토양으로부터 항균물질 생성균 및 감수성 균주의 분리 및 동정)

  • 장해춘;김수인;김인철
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.3
    • /
    • pp.526-533
    • /
    • 1999
  • Two species of antimicrobial agent producing bacteria and one sensitive strain were isolated from soil. Those were identified as B. subtilis, B. licheniformis, and Curtobacterium sp. by morphological, biochemical, physiological and chemotaxonomic characteristics. These were designated as B. subtilis cx1, B. licheniformis cy2 and Curtobacterium sp. cf3, respectively. Antimicrobial agent produced by B. subtilis cx1 showed high antibacterial activity against gram positive bacteria including of B. subtilis, Curtobacterium sp., L. mesenteroids, Staphy. aureus, S. faecalis and even gram negative bacteria, P. aeruginosa. Antimicrobial agent from B. licheniformis cy2 showed slightly lower antimi crobial activity than that from B. subtilis cx1. These two strains showed maximum production of antimicrobial agents at 30oC for 9~21hr cultivation. Curtobacterium sp. cf3 showed more sensitive activity than a sensitive strain of B. subtilis ATCC 6633 which was same genus or species with the B. subtilis cx1 and B. subtilis cy2, when the antimicrobial agent producing strains, B. subtilis cx1 and B. subtilis cy2, were directly applied onto these sensitive lawns.

  • PDF