• 제목/요약/키워드: Soil around TRIGA

검색결과 3건 처리시간 0.019초

동전기적방법을 이용한 TRIGA 연구로 주변 토양내의 세습과 코발트 제거 (Removal of Cesium and Cobalt within Soil around TRIGA Reactor by Electrokinetic method)

  • 김계남;원희준;정종헌;오원진
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2004년도 학술논문집
    • /
    • pp.13-23
    • /
    • 2004
  • 동전기적방법을 사용하여 TRIGA 연구용 원자로 주변 세슘 및 코발트제거 특성을 분석하고 토양컬럼 내의 pH 상승을 제거할 수 있는 방안을 제시했다. 전기장을 높이기 위해 NaCl 용액이 전해질로 사용되었을 때, 토양컬럼 음극주변에 침전물이 형성되어 낮은 제거효율을 나타냈다. 그래서, pH의 상승을 억제하기 위해 초산완충액을 토양컬럼에 주입하고, 초산을 주기적으로 음극저수조에 주입했다. 초기제염기간 동안 전기삼투보다는 전기이동에 의해 많은 세슘과 코발트가 제거되었다. 토양컬럼 내의 총 세슘 중 96%가 5.9 일 동안 제거되었고, 총 코발트 중 94%가 제거되었다. 또한, 개발된 모델에 의한 시뮬레이션 결과는 실험결과와 거의 일치했다.

  • PDF

오염토양 제염폐수 재사용 및 재생 연구 (Study on Reuse and Recycling of Soil Washing Wastewater)

  • 김계남;정기정;이동규
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2001년도 총회 및 춘계학술발표회
    • /
    • pp.226-229
    • /
    • 2001
  • For volume reduction of the wastewater generated on washing the soil contaminated with cobalt, recycling and reuse experiments of the wastewater were executed. Also. the soil remediation efficiency by repetitive washing with fresh citric acid was analyzed. The soil around TRIGA was sampled for the experiment. Results of recycling experiment by replacement-precipitation method were as follows. The remediation efficiency of 1st recycling wastewater was 97% and that of 2nd recycling wastewater was 94%. Also, To obtain remediation efficiency over than 90%, the 5th repetitive washing with fresh citric acid was needed.

  • PDF

An Analysis of the Ageing Effect on the Removal of Cesium and Cobalt from Radioactive Soil by the Electrokinetic Method

  • Kim Gye-Nam;Oh Won-Zin;Won Hui-Zun;Jung Chong-Hun
    • Nuclear Engineering and Technology
    • /
    • 제36권4호
    • /
    • pp.304-315
    • /
    • 2004
  • The ageing effects of radionuclides in radioactive soil on remediation using the electrokinetic method were analyzed. Comparative experiments were conducted for the reactive soil around a TRIGA research? reactor contaminated with $^{137}Cs\;and\;^{60}Co$ for 15 years and the non-reactive soil that was intentionally contaminated with $Cs^+\;and\;Co^{2+}$ for 3 days. It was observed that because of an aging effect on $^{137}Cs$, the efficiency of removing it decreased. $H_{2}SO_4$ used as an additive to increase the removal efficiency showed a higher removal capability than other chemicals for both $^{137}Cs\;and\;^{60}Co$. The efficiency of removing radionuclides from the radioactive soil in the column was proportional to the capability of the added chemical to extract radionuclides. It took 10 days to achieve a $54\%$ removal of $^{137}Cs$ and a $97\%$ removal of $^{60}Co$ from the soil. The volume of the soil wastewater discharged from the soil column by the electrokinetic method was $20\%$ below that for soil washing.