• 제목/요약/키워드: Soil and water runoff

검색결과 626건 처리시간 0.028초

RUSLE방법을 이용한 만대천유역의 토사유출량 및 기여울 산정 (Estimation of soil runoff and contribution in the mandae-cheun basin by the using RUSLE methood)

  • 박수진;최한규;국성표;임윤수
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2011년도 학술발표회
    • /
    • pp.188-193
    • /
    • 2011
  • This study was intended to estimate the soil runoff at the basin of Mandaechun where the measure needs to be taken to deal with the increasing muddy water resulting from soil runoff during wet season and torrential rain at the high reaches of the Soyang lake where highland vegetables are cultivated and soil replacement for improvement is carried out every two to three years. The study was carried out in such a way of identifying the topographic factors using geographical spatial data from Water Management Information System (WAMIS) and ARC-VIEW program and estimating the soil runoff by rainfall frequency using Revised Universal Soil Loss Equation (RUSLE), and furthermore, evaluating the soil runoff contribution at the basin of Mandaechun based on estimate of the soil runoff by section.

  • PDF

산지사면의 유출 및 토양침식에 대한 에너지 보존 (Energy Conservation for Runoff and Soil Erosion on the Hillslope)

  • 신승숙;박상덕;조재웅;홍종선
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.234-238
    • /
    • 2008
  • The energy conservation theory is introduced for investigating processes of runoff and soil erosion on the hillslope system changed vegetation condition by wildfire The rainfall energy, input energy consisted of kinetic and potential energy, is influenced by vegetation coverage and height. Output energy at the outlet of hillslope is decided as the kinetic energy of runoff and erosion soil, and mechanical work according to moving water and soil is influenced dominantly by the work rather than the kinetic energy. Relationship between output and input energy is possible to calculate the energy loss in the runoff and erosion process. The absolute value of the energy loss is controlled by the input energy size of rainfall because energy losses of runoff increase as many rainfall pass through the hillslope system. The energy coefficient which is dimensionless is defined as the ratio of input energy of rainfall to output energy of runoff water and erosion soil such as runoff coefficient. The energy coefficient and runoff coefficient showed the highest correlation coefficient with the vegetation coverage. Maximum energy coefficient is about 0.5 in the hillslope system. The energy theory for output energy of runoff and soil erosion is presented by the energy coefficient theory associated with vegetation factor. Also runoff and erosion soil resulting output energy have the relation of power function and the rates of these increase with rainfall.

  • PDF

APPLICATION AND EVALUATION OF THE GLEAMS MODEL TO A CATTLE GRAZING PASTURE FIELD IN NORTH ALABAMA

  • Kang, M. S.;P. prem, P.-Prem;Yoo, K. H.;Im, Sang-Jun
    • Water Engineering Research
    • /
    • 제5권2호
    • /
    • pp.55-68
    • /
    • 2004
  • The GLEAMS (Groundwater Loading Effects of Agricultural Management System, version 3.0) water quality model was used to predict hydrology and water quality and to evaluate the effects of soil types from a cattle-grazed pasture field of Bermuda-Rye grass rotation with poultry litter application as a fertilizer in North Alabama. The model was applied and evaluated by using four years (1999-2002) of field-measured data to compare the simulated results for the 2.71- ha Summerford watershed. $R^2$ values between observed and simulated runoff, sediment yields, TN, and TP were 0.91, 0.86, 0.95, and 0.69, respectively. EI (Efficiency Index) of these parameters were 0.86, 0.67, 0.70, and 0.48, respectively. The statistical parameters indicated that GLEAMS provided a reasonable estimation of the runoff, sediment yield, and nutrient losses at the studied watershed. The soil infiltration rates were compared with the rainfall events. Only high intensity rainfall events generated runoff from the watershed. The measured and predicted infiltration rates were higher during dry soil conditions than wet soil conditions. The ratio of runoff to precipitation was ranging from 2.2% to 8.8% with average of 4.3%. This shows that the project site had high infiltration and evapotranspiration which generated the low runoff. The ratio of runoff to precipitation according to soil types by the GLEAMS model appeared that Sa (Sequatchie fine sandy loam) soil type was higher and Wc (Waynesboro fine sandy loam, severely eroded rolling phase) soil type relatively lower than the weighted average of the soil types in the watershed. The model under-predicted runoff, sediment yields, TN, and TP in Wb (Waynesboro fine sandy loam, eroded undulating phase) and Wc soil types. General tendency of the predicted data was similar for all soil types. The model predicted the highest runoff in Sa soil type by 105% of the weighted average and the lowest runoff in Wc soil type by 87% of the weighted average

  • PDF

RUSLE 방법을 이용한 만대천 유역의 토사유출량 산정 (The Estimation of Soil Runoff in the Man-dae Cheun Basin by the using RUSLE Method)

  • 최한규;박수진;국성표
    • 산업기술연구
    • /
    • 제30권B호
    • /
    • pp.99-108
    • /
    • 2010
  • This study was intended to estimate the soil runoff at the basin of Mandaechun where the measure needs to be taken to deal with the increasing muddy water resulting from soil runoff during wet season and torrential rain at the high reaches of the Soyang lake where highland vegetables are cultivated and soil replacement for improvement is carried out every two to three years. The study was carried out in such a way of identifying the topographic factors using geographical spatial data from Water Management Information System (WAMIS) and ARC-VIEW program and estimating the soil runoff by rainfall frequency using Revised Universal Soil Loss Equation (RUSLE), and furthermore, evaluating the soil runoff contribution at the basin of Mandaechun based on estimate of the soil runoff by section.

  • PDF

토양칼럼을 이용한 초기우수 중 염양염류의 수변녹지 토양에서의 제거도 평가 (Soil Column Experiment to Evaluate Removal of Nutrients in Stormwater Runoff by Soil of Riparian Protection Zone)

  • 윤석표;최지용
    • 한국물환경학회지
    • /
    • 제20권3호
    • /
    • pp.231-235
    • /
    • 2004
  • To investigate removal effects of nutrients in stormwater runoff by soil of riparian protection zone, soil column experiment was conducted for 20 months. Artificial stormwater runoff containing phosphate and nitrate was applied on the surface of soil column twice a week, and phosphate and nitrate concentrations were measured from the leached water. Soil of riparian protection zone reduced the released amount of infiltrated water to the surrounding water. After infiltration of 1m depth of soil column, average removal rates of phosphate and nitrate were 97.7 % and 74.7 %, respectively. As main mechanisms of phosphate are adsorption to soil particle and utilization by plants, periodical replacement of soil and harvesting of plant at the end of growing season are required. For the removal of nutrients in stormwater runoff by the soil layer, soil of riparian protection zone has higher hydraulic conductivity to infiltrate stormwater. Sandy soil having hydraulic conductivity of about $1{\times}10^{-2}cm/s$ range might be appropriate for this purpose.

HWSD와 정밀토양도를 이용한 유출해석시 토양 매개변수 특성 비교 평가 (Soil Related Parameters Assessment Comparing Runoff Analysis using Harmonized World Soil Database (HWSD) and Detailed Soil Map)

  • 최윤석;정영훈;김주훈;김경탁
    • 한국농공학회논문집
    • /
    • 제58권4호
    • /
    • pp.57-66
    • /
    • 2016
  • Harmonized World Soil Database (HWSD) including the global soil information has been implemented to the runoff analysis in many watersheds of the world. However, its accuracy can be a critical issue in the modeling because of the limitation the low resolution reflecting the physical properties of soil in a watershed. Accordingly, this study attempted to assess the effect of HWSD in modeling by comparing parameters of the rainfall-runoff model using HWSD with the detailed soil map. For this, Grid based Rainfall-runoff Model (GRM) was employed in the Hyangseok watershed. The results showed that both of two soil maps in the rainfall-runoff model are able to well capture the observed runoff. However, compared with the detailed soil map, HWSD produced more uncertainty in the GRM parameters related to soil depth and hydraulic conductivity during the calibrations than the detailed soil map. Therefore, the uncertainty from the limited information on soil texture in HWSD should be considered for better calibration of a rainfall-runoff model.

설마천 연구지역에서의 토양수분량을 활용한 유출 발생 특성분석 (An analysis of runoff characteristic by using soil moisture in Sulma basin)

  • 김기영;이용준;정성원;이연길
    • 한국수자원학회논문집
    • /
    • 제52권9호
    • /
    • pp.615-626
    • /
    • 2019
  • 토양수분과 유출은 매우 밀접한 관계를 가지고 있으며, 특히 토양 내의 여러 요소들에 의해 토양의 수분보유능력과 배수의 특성이 결정된다. 본 연구에서는 2016년, 2017년 설마천 유역에서 총 40개의 사상을 분리하였다. 선정한 사상별로 constant-K 방법을 적용하여 직접유출과 기저유출을 분리하고 유출계수를 산정하였다. 산정된 유출계수는 선행토양함수와 지수함수 형태의 증가를 보였다. 또한 유출계수가 급증하기 시작하는 토양수분의 임계값을 선정하였으며, 이 값은 유출과 지하수면과의 큰 상관관계를 나타내었다. 선행토양함수뿐만 아니라 초기 토양수분, 토양 저류량, 강우량 등 여러 인자들도 유출 결과에 영향을 미치는 것으로 분석되었다. 또한 선행토양수분의 임계값에 따라 강우사상을 건조, 습윤 상태로 분리하여 시작 반응과 첨두 반응을 분석해 보았으며, 습윤 상태에서의 반응이 건조 상태에서 보다 빠르게 발생하였다. 건조 상태에 속하는 대부분의 사상에서는 토양수분이 정점에 도달한 후 지하수면과 유출량 순으로 정점에 도달하는 첨두 반응이 일어났으나 습윤 상태에서는 반대로 지하수면과 유출량이 토양수분보다 먼저 정점에 도달하였다. 본 연구의 결과는 유출에 기여하는 인자들 사이의 상호작용을 확인하고 토양의 다양한 조건과 유출 사이의 관계를 규명하는 데에 크게 기여할 것으로 판단된다.

공동주택단지 내 인공지반 녹지조성 형태에 따른 우수유출 저감효과 (A Study on Runoff Water Reduction Effects According to Shapes of Formation of Artificial Soil Green Area in Multi-Housing Complex)

  • 남미아;장대희;김현수
    • KIEAE Journal
    • /
    • 제13권1호
    • /
    • pp.9-15
    • /
    • 2013
  • This study aims to analyze, by forming an experimental area of artificial soil green area that is of equal scale and analyzing the characteristics of runoff water in accordance with the cross-section configuration, applied the benefits in an actual multi-housing case study complex. In examining the measurement test results of the runoff water infiltration amount and surface runoff amount of a low-profile type green area(Dish type) and a general type green area(Mound type), Dish type was seen to have 1.5-times higher runoff water infiltration amount than Mound type during heavy rainfalls and showed about a 50% reduction with respect to the surface runoff amount. In other words, artificial soil green area offers the benefit of reduction of surface runoff amount and suggests, in actuality even with a change to the cross-sectional configuration of artificial soil green area alone at the time of construction of multi-housings, the possibility of benefits and reduction of costs spent on existing rainwater management facilities.

End-Member Mixing Analysis를 이용한 산림 소유역의 임상별 유출분리 비교 (Comparing of Hydrograph Separation in deciduous and coniferous catchments using the End-Member Mixing Analysis)

  • 김수진;최형태
    • 한국지형학회지
    • /
    • 제23권1호
    • /
    • pp.77-85
    • /
    • 2016
  • To understand the difference of runoff discharge processes between Gwangneung deciduous and coniferous forest catchments, we collected hydrological data (e.g., precipitation, soil moisture, runoff discharge) and conducted hydrochemical analyses in the deciduous and coniferous forest catchments in Gwangneung National Arboretum in the northwest part of South Korea. Based on the end-member mixing analysis of the three storm events during the summer monsoon in 2005, the hillslope runoff in the deciduous forest catchment was higher 20% than the coniferousforest catchment during the firststorm event. Howerver, hillslope runoff increased from the second storm event in the coniferous catchment. We conclude that low soil water contents and topographical gradient characteristics highly influence runoff in the coniferous forest catchment during the first storm events. In general, coniferous forests are shown high interception loss and low soil moisture compared to the deciduous forests. It may also be more likely to be a reduction in soil porosity development when artificial coniferous forests reduced soil biodiversity. The forest soil porosity is an important indicator to determine the water recharge of the forest. Therefore, in order to secure the water resources, it should be managed coniferous forests for improving soil biodiversity and porosity.

Characteristics of TN and TP in Runoff from Reclaimed Paddy Field of Fine Sandy Loam

  • Lee, Kyung-Do;Hong, Suk-Young;Kim, Yi-Hyun;Na, Sang-Il;Lee, Kyeong-Bo
    • 한국토양비료학회지
    • /
    • 제46권6호
    • /
    • pp.417-425
    • /
    • 2013
  • This study investigated the runoff from rice paddy located on reclaimed fine sandy loam soil to provide data for the development of policies to protect water quality of estuaries. Total N (TN), Total P (TP) concentrations and runoff loads at outlet were monitored from 2006 to 2008. Soil phosphate adsorptivity was measured and compared with typical paddy soil in watersheds. TP concentration of the paddy water and TP runoff loads were much greater than those of typical paddy field in watershed because phosphate adsoptivity in reclaimed paddy field of fine sandy loam appeared to be a third of those of typical paddy soils by relatively low soil OM and high sand content of the reclaimed soil. Thus, nutrient runoff, particularly phosphate from the reclaimed paddy field needs to be managed more thoroughly to protect estuarine water quality.