• Title/Summary/Keyword: Soil and Groundwater

Search Result 3,591, Processing Time 0.034 seconds

Pilot-scale Applications of a Well-type Reactive Barrier using Autotrophic Sulfur-oxidizers for Nitrate Removal (독립영양 황탈질 미생물을 이용한 관정형 반응벽체의 현장적용성 연구)

  • Lee, Byung-Sun;Um, Jae-Yeon;Lee, Kyu-Yeon;Moon, Hee-Sun;Kim, Yang-Bin;Woo, Nam-C.;Lee, Jong-Min;Nam, Kyoung-Phile
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.3
    • /
    • pp.40-46
    • /
    • 2009
  • The applicability of a well-type autotrophic sulfur-oxidizing reactive barrier (L $\times$ W $\times$ D = $3m\;{\times}\;4\;m\;{\times}\;2\;m$) as a long-term treatment option for nitrate removal in groundwater was evaluated. Pilot-scale (L $\times$ W $\times$ D = $8m\;{\times}\;4\;m\;{\times}\;2\;m$) flow-tank experiments were conducted to examine remedial efficacy of the well-type reactive barrier. A total of 80 kg sulfur granules as an electron donor and Thiobacillus denitrificans as an active bacterial species were prepared. Thiobacillus denitrificans was successfully colonized on the surface of the sulfur granules and the microflora transformed nitrate with removal efficiency of ~12% (0.07 mM) for 11 days, ~24% (1.3 mM) for 18 days, ~45% (2.4 mM) for 32 days, and ~52% (2.8 mM) for 60 days. Sulfur granules attached to Thiobacillus denitrificans were used to construct the well-type reactive barrier comprising three discrete barriers installed at 1-m interval downstream. Average initial nitrate concentrations were 181 mg/L for the first 28 days and 281 mg/L for the next 14 days. For the 181 mg/L (2.9 mM) plume, nitrate concentrations decreased by ~2% (0.06 mM), ~9% (0.27 mM), and ~15% (0.44 mM) after $1^{st}$, $2^{nd}$, and $3^{rd}$ barriers, respectively. For the 281 mg/L (4.5 mM) plume, nitrate concentrations decreased by ~1% (0.02 mM), ~6% (0.27 mM), and ~8% (0.37 mM) after $1^{st}$, $2^{nd}$, and $3^{rd}$ barriers, respectively. Nitrate plume was flowed through the flow-tank for 49 days by supplying $1.24\;m^3/d$ of nitrate solution. During nitrate treatment, flow velocity (0.44 m/d), pH (6.7 to 8.3), and DO (0.9~2.8 mg/L) showed little variations. Incomplete destruction of nitrate plume was attributed to the lack of retention time, rarely transverse dispersion, and inhibiting the activity of denitrification enzymes caused by relatively high DO concentrations. For field applications, it should be considered increments of retention time, modification of well placements, and intrinsic DO concentration.

Distribution and Biodegradation of Crude oil-Degrading Bacteria in P'ohang Coastal Area (포항근해 원유분해세균의 분포 및 원유분해능)

  • 이창호;권기석;서현호;김희식;오희목;윤병대
    • Journal of Korea Soil Environment Society
    • /
    • v.1 no.2
    • /
    • pp.35-42
    • /
    • 1996
  • Seawater samples were collected from P'ohang coastal area during April 1995 - January 1996. The distribution of total heterotrophic bacteria and crude oil-degrading bacteria (CDB) were studied. In addition, biodegradation of crude oil was investigated through mono and mixed culture. The heterotrophic bacterial distribution was in the range of 4.1 $\times$ $10^4$- 1.2 $\times$ $10^5$ CFU/$m\ell$, respectively. The percent of crude oil-degrading bacteria against total heterotrophic bacteria was 0.05-0.54% which was lower than other marine samples reported. Therefore it could be suggested that the distribution of crude oil-degrading bacteria in the seawater of P'ohang coastal area was highly affected by presence of petroleum hydrocarbon. Taxonomical characteristics of 26 isolates were investigated. The results of identification were showed 7 genera which were Acinetobacter spp., Bacillus spp., Citrobacter spp., Micrococcus spp., Moraxella spp., Rhodococcus spp., and Serratia spp. Appearance of Enterobacteriaceae indicated that the seawater was polluted with wastewater. Also genus of Bacillus had predominant in CDB on P'ohang coastal area. In flask culture, biodegradation of crude oil was enhanced by addition of mixed culture of CDB.

  • PDF

Application of the Homogenization Analysis to Calculation of a Permeability Coefficient (투수계수 산정을 위한 균질화 해석법의 적응)

  • 채병곤
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.1
    • /
    • pp.79-86
    • /
    • 2004
  • Hydraulic conductivity along rock fracture is mainly dependent on fracture geometries such as orientation, aperture, roughness and connectivity. Therefore, it needs to consider fracture geometries sufficiently on a fracture model for a numerical analysis to calculate permeability coefficient in a fracture. This study performed new type of numerical analysis using a homogenization analysis method to calculate permeability coefficient accurately along single fractures with several fracture models that were considered fracture geometries as much as possible. First of all, fracture roughness and aperture variation due to normal stress applied on a fracture were directly measured under a confocal laser scaning microscope (CLSM). The acquired geometric data were used as input data to construct fracture models for the homogenization analysis (HA). Using the constructed fracture models, the homogenization analysis method can compute permeability coefficient with consideration of material properties both in microscale and in macroscale. The HA is a new type of perturbation theory developed to characterize the behavior of a micro inhomogeneous material with a periodic microstructure. It calculates micro scale permeability coefficient at homogeneous microscale, and then, computes a homogenized permeability coefficient (C-permeability coefficient) at macro scale. Therefore, it is possible to analyze accurate characteristics of permeability reflected with local effect of facture geometry. Several computations of the HA were conducted to prove validity of the HA results compared with the empirical equations of permeability in the previous studies using the constructed 2-D fracture models. The model can be classified into a parallel plate model that has fracture roughness and identical aperture along a fracture. According to the computation results, the conventional C-permeability coefficients have values in the range of the same order or difference of one order from the permeability coefficients calculated by an empirical equation. It means that the HA result is valid to calculate permeability coefficient along a fracture. However, it should be noted that C-permeability coefficient is more accurate result than the preexisting equations of permeability calculation, because the HA considers permeability characteristics of locally inhomogeneous fracture geometries and material properties both in microscale and macroscale.

Identification of Conductive Fractures in Crystalline Recks (유동성 단열 파악을 위한 암반 내 단열특성 규명)

  • 채병곤;최영섭;이대하;김원영;이승구;김중렬
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.2
    • /
    • pp.88-100
    • /
    • 1998
  • Since fractures may serve as major conduits of groundwater flow in crystalline rocks, characterization of conductive fractures is especially important for interpretation of flow system. In this study, characterization of fractures to investigate hydraulically conductive fractures in gneisses at an abandoned mine area was performed. The orientation, width, length, movement sense, infilling materials, spacing, aperture, roughness of both joints and faults and intersection and connectivity to other joints were measured on outcrops. In addition, characteristics of subsurface fractures were examined by core logging in five boreholes, of which the orientations were acquired by acoustic televiewer logging from three boreholes. The dominant fracture sets were grouped from outcrops; GSet 1: N50-82$^{\circ}$E/55-90$^{\circ}$SE, GSet 2: N2-8$^{\circ}$E/56-86$^{\circ}$SE, GSet 3: N46-72$^{\circ}$W/60-85$^{\circ}$NE, GSet 4:Nl2-38$^{\circ}$W/15-40$^{\circ}$SW and from subsurface; HSet 1: N50-90$^{\circ}$E/55-90$^{\circ}$SE, HSet 2: N10-30$^{\circ}$E/50-70$^{\circ}$SE, HSet 3: N20-60$^{\circ}$W/50-80$^{\circ}$NE, HSet 4: N10-50$^{\circ}$E/$\leq$40$^{\circ}$NW. Among them, GSet 1, GSet 3 and HSet 1, HSet 3 are the most intensely developed fracture sets in the study area. The mean fracture spacings of HSet 1 are 30-47cm and code 1 fractures, such as faults and open fractures, comprise 21.0-42.9 percent of the whole fractures in each borehole. HSet 3 shows the mean fracture spacings of 55-57cm and the ratio of code 1 fractures is 15.4-26.9 percent. In spite of the mean fracture spacing of 239cm, code 1 fractures of HSet 4 have the highest ratio of 54.5 percent. From the fact that faults or open fractures have high hydraulic conductivity, it can be inferred that the three fracture sets of N55-85$^{\circ}$E/50-80$^{\circ}$SE, N20-60$^{\circ}$W/50-75$^{\circ}$NE and N10-30$^{\circ}$E/$\leq$30$^{\circ}$NW from a fracture system of relatively high conductivity. It is indirectly verified with geophysical loggings and constant injection tests performed in the boreholes.

  • PDF

The Effects of Environmental Conditions on the Reduction Rate of TNT by $Fe^0$ (환경요인이 $Fe^0$에 의한 TNT의 환원 반응속도에 미치는 영향)

  • 배범한
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.2
    • /
    • pp.87-97
    • /
    • 2000
  • The effects of environmental conditions, initial dissolved oxygen concentrations, pH, and the presence of electron carrier vitamin $B_{12}$, on the reduction rate of Tn by $Fe^0$ was quantitatively analyzed using a batch reactor In all experiments, TNT reduction was best described with a first order reaction and the reduction rate decreased with the increase in the initial DO concentration. However, the specific reaction rate did not decrease linearly with the increase in the initial DO concentration. In the presence of HEPES buffer 0.2 and 2.0 mM(pH 5.7$\pm$0.2), the specific reaction rate increased more than 5.8 times, which showed reduction rate is rather significantly influenced by the pH of the solution. To test the possibility of reaction rate enhancement, well-known electron carrier(or mediator) , vitamin $B_{12}$, has augmented besides $Fe^0$. In the presence of 8.0 $mu\textrm{g}$/L of vitamin $B_{12}$, the specific reaction rate increased as much as 14.6 times. The results indicate that the addition of trace amount of vitamin $B_{12}$ can be a promising rate controlling option for the removal of organics using a $Fe^0$ filled permeable reactive barrier.

  • PDF

Assessment of long-term groundwater abstraction and forest growth impacts on watershed hydrology using SWAT (SWAT을 이용한 장기간 지하수 양수와 산림 성장이 수문에 미치는 영향 평가)

  • Kim, Wonjin;Woo, Soyoung;Kim, Sehoon;Kim, Jinuk;Kim, Seongjoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.101-101
    • /
    • 2021
  • 본 연구에서는 금강 유역(9,645.5 km2)을 대상으로 SWAT(Soil and Water Assessment Tool)을 이용하여 장기간 지하수 양수와 산림 성장이 수문에 미치는 영향을 평가하였다. 1976년부터 2015년까지 40년의 지하수 이용량(GU)과 산림 성장(FG) 자료를 10년 단위(1980s; 1976~1985, 1990s; 1986~1995, 2000s; 1996~2005, 2010s; 2006~2015)로 구축하고, SWAT 입력자료와 증발산량 매개변수로 사용하여 연대별 지하수 양수와 산림 생장을 반영하였다. 금강 유역 내 위치한 2개의 다목적댐과 3개의 다기능 보에서 관측된 일별 유량으로 2006년부터 2015까지 10년을 검·보정하여 모델의 적용성을 검증하였다. 5지점에 대한 검보정 결과, NSE는 0.76에서 0.79, R2는 0.78에서 0.81, RMSE는 0.55 mm/day에서 1.96 mm/day, PBIAS는 -5.48%에서 8.56%로 통계적으로 유의한 수준으로 분석되었다. 적용성을 검증한 SWAT에 각 연대에 맞는 GU와 FG 정보를 입력하여 수문을 모의하였으며, 두 요인이 물순환에 미치는 영향을 평가하기 위하여 기상조건은 2010s로 고정하였다. 모의결과, GU와 FG 변화가 주는 영향으로 유역 출구의 총유출량은 7.8%(60.7 mm/year) 감소하였으며, 1980s과 2010s에서 각각 775.0 mm/year, 714.3 mm/year의 값을 보였다. 물순환 분석 결과, 지표유출, 중간유출, 기저유출, 침투량, 토양수분은 감소하는 경향을 보였고, 증발산량과 지하수 충전량(GWR)은 증가하는 경향을 보였다. GU의 증가로 인한 지하수위의 지속적인 감소가 GWR이 증가하는 원인으로 판단하였으며, 강우 기간에 포장용수량 이상의 토양수가 빠르게 흘러 지하수 충전량을 증가시켰다고 추론하였다. 또한, 유황 곡선을 분석한 결과, 유량이 지하수 양수와 산림 생장에 영향을 받은 지역에서 시간 흐름에 따라 감소하였고, 저유량 구간에서 상대적으로 많이 감소하였다.

  • PDF

Identification of Active Agents for Reductive Dechlorination Reactions in Cement/Fe (II) Systems by Using Cement Components (시멘트 구성성분을 이용한 시멘트/Fe(II)의 TCE 환원성 탈염소화 반응의 유효반응 성분 규명)

  • Jeong, Yu-Yeon;Kim, Hong-Seok;Hwang, In-Seong
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.1
    • /
    • pp.92-100
    • /
    • 2008
  • Experimental studies were conducted to identify the active agents for reductive dechlorination of TCE in cement/Fe(II) systems focusing on cement components such as CaO, $Fe_2O_3$, and $Al_2O_3$. A hematite that was used to simulate an $Fe_2O_3$ component in cement was found to have degradation efficiencies (k = 0.641 $day^{-1}$) equivalent to that of cement/Fe(II) systems in the presence of CaO/Fe(II), only when it contained an aluminum impurity$(Al_2O_3)$. When the effect of $Al_2O_3$ content of hematite/CaO/$Al_2O_3$/Fe(II) system was tested, the mole ratio of $Al_2O_3$ to CaO affected the rate of TCE degradation with an optimum ratio around 1 : 10 that resulted in a rate constant of 0.895 $day^{-1}$. In the SEM images of hematite/CaO/$Al_2O_3$/Fe(II) systems, acicular crystals were also found that were also observed in cement/Fe(II) systems. Thus it was suspected that these crystals were reactive reductants and that they might be goethite or ettringite that are known to have acicular structures. An EDS element map analysis revealed that these crystals were not goethite crystals. A subsequent experiment that tested reactivities of compounds formed during the ettringite synthesis showed that ettringite and minerals associated with ettringite formation are not reactive reductants. These observations conclude that a mineral containing CaO and $Al_2O_3$ with a acicular structure could be a major reactive reductant of cement/Fe(II) systems.

Analysis on Impact Factors of Open-cut Type Excavation Work using Numerical Analysis Method (수치해석기법을 이용한 개착식 지반굴착공사의 영향인자 분석)

  • Seong, Joo-Hyun;Kim, Yong-Soo;Shin, Byoung-Gil
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.3
    • /
    • pp.43-53
    • /
    • 2013
  • In this study, an analysis about the causes of different types of excavation on accidents is required in order to prevent the frequently occurring accidents related to the earth retaining structure and excavation. Also, analysis of influence was performed by using numerical typical soil conditions and construction trend using numerical analysis method. According to the analysis results of 25 accident cases, the main influence factors were found as following: insufficient of soil survey, instability of temporary facility and lack of groundwater treatment, etc. Furthermore, in the numerical analysis result of 22 cases, drainage method was occurred larger settlement than waterproof method in the Inland. In case of applying the earth anchor method, it needs more detailed in the regions, which are discovered soft ground or rock discontinuities. Also, The consolidated clay absolutely needs further consideration of excess hydrostatic pressure.

Identification of Active Agents for Reductive Dechlorination in Cement/Fe(II) Systems (시멘트와 Fe(II)을 이용한 환원성 탈염소화반응의 유효반응성분 규명)

  • Kim, Hong-Seok;Lee, Yu-Jung;Kim, Ha-Yan;Hwang, In-Seong
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.6
    • /
    • pp.35-42
    • /
    • 2006
  • Experimental study was conducted to identify the active agent for reductive dechlorination of TCE in cement/Fe(II) systems. Several potential materials-hematite (${\alpha}-Fe_2O_3$), lepidocrocite (${\gamma}$-FeOOH), akaganeite (${\beta}$-FeOOH), ettringite ($Ca_6Al_2(SO_4)_3(OH)_{12}$)-that are cement components or parts of cement hydrates were tested if they could act as reducing agents by conducting TCE degradation experiments. From the initial degradation experiments, hematite was selected as a potential active agent. The pseudo-first-order degradation rate constant ($k\;=\;0.637\;day^{-1}$) for the system containing 200 mM Fe(II), hematite and CaO was close to that ($k\;=\;0.645\;day^{-1}$) obtained from the system containing cement and 200 mM Fe(II). CaO, which was originally added to simulate pH of the cement/Fe(II) system, was found to play an important role in degradation reactions. The reactivity of the hematite/CaO/Fe(II) system initially increased with increase of CaO dosage. However, the tendency declined in the higher CaO dosage region, implying a saturation type of behavior. The SEM analysis revealed that the hexagonal plane-shaped crystals were formed during the reaction with increasing degradation efficiency, which was brought about by increasing the CaO dosage. It was suspected that the crystals could be portlandite or green rust ($SO_4$) or Friedel's salt. The XRD analysis of the same sample identified the peaks of hematite, magnetite/maghemite, green rust ($SO_4$). Either instrumental analysis predicted the presence of the green rust ($SO_4$). Therefore, the green rust ($SO_4$) would potentially be a reactive agent for reductive dechlorination in cement/Fe(II) systems.

Analyses for hydraulic gradient and major flow direction of groundwater in the soil aquifer (토양층에서 지하수 수리경사와 주 흐름 방향 분석)

  • Kim, Tae-Yeong;Kang, Dong-Hwan;KIm, Sung-Soo;Kwon, Byung-Hyuk;Yu, Hun-Sun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1955-1959
    • /
    • 2009
  • 본 연구에서는 토양층에서 지하수 수리경사와 주 흐름 방향을 산정하여 변동특성을 분석하고, 그 원인에 대해 고찰하였다. 연구부지는 부경대학교 환경연구동 앞 잔디밭이며, 2008년 10월 18일 ${\sim}$ 11월 1일의 기간 중 12일(10월 21, 28일은 관측 못함) 동안 24회 관측되었다. 관측된 지하수공은 9개공이며, 4 m ${\times}$ 4 m의 정방형으로 설계되었다. 지하수위에 의한 수리경사와 주 흐름 방향의 산정은 총 9가지 형태의 평면으로 가정하여 산정하였다. 수리경사와 주 흐름 방향을 산정하기 위한 평면은 모두 9가지 형태로 가정하였다. 첫 번째는 9개공 모두를 이용한 정방형 평면(TW), 두 번째는 6개공을 이용한 4가지 경우의 삼각형 평면(T1, T2, T3 및 T4), 세 번째는 6개공을 이용한 4가지 경우의 직사각형 평면(R1, R2, R3 및 R4)으로 가정하여 각각의 평면에서 수리경사와 주 흐름 방향을 산정하였다. 이상에서 가정된 9가지 평면에서 산정된 평균 수리경사는 0.0094(R2) ${\sim}$ 0.0123(T2)의 범위로 나타났으며, 9개공 모두를 이용한 평면(TW)에서의 평균 수리경사는 0.0109로 산정되었다. 관측기간 동안 T1과 T3 평면의 평균 주 흐름 방향은 각각 -84.9818과 -86.2487로서, 다른 7개 평면의 평균 주 흐름 방향이 79.7045(T4) ${\sim}$ 85.8405(TW)의 범위로 나타난 것과는 반대의 흐름 방향을 보였다. 이러한 결과는, 본 연구에 적용된 수리경사와 주 흐름 방향의 산정기법(Devlin, 2003)이 삼각형 형태의 평면에는 부적합할 수 있음을 보여주는 것이다. 관측기간 중 10월 12일에 내린 소량의 강우(12 mm)에 의한 수리경사와 주 흐름 방향의 변동은 크게 나타나지 않았다. 본 연구에서는 정방형, 삼각형 및 직사각형의 평면 토양층에서 지하수의 수리경사와 주 흐름 방향을 산정하여 전체 및 국부적인 부지에서의 차이를 파악하고, 평면의 형태에 따른 수리경사와 주 흐름 방향의 차이 또한 확인할 수 있었다.

  • PDF