• Title/Summary/Keyword: Soil Stabilization material

Search Result 53, Processing Time 0.028 seconds

Stabilization of backfill using TDA material under a footing close to retaining wall

  • Arefnia, Ali;Dehghanbanadaki, Ali;Kassim, Khairul Anuar;Ahmad, Kamarudin
    • Geomechanics and Engineering
    • /
    • v.22 no.3
    • /
    • pp.197-206
    • /
    • 2020
  • Reutilization of solid waste such as Tire Derived Aggregate (TDA) and mixing it with soft soil for backfill material not only reduces the required volume of backfill soil (i.e., sand-mining procedures; reinforcement), but also preserves the environment from pollution by recycling. TDA is a widely-used material that has a good track record for improving sustainable construction. This paper attempted to investigate the performance of Kaolin-TDA mixtures as a backfill material underneath a strip footing and close to a retaining wall. For this purpose, different types of TDA i.e., powdery, shredded, small-size granular (1-4 mm) and large-size granular (5-8 mm), were mixed with Kaolin at 0, 20, 40, and 60% by weight. Static surcharge load with the rate of 10 kPa per min was applied on the strip footing until the failure of footing happened. The behaviour of samples K80-G (1-4 mm) 20 and K80-G (5-8 mm) 20 were identical to that of pure Kaolin, except that the maximum footing stress had grown by roughly three times (300-310 kPa). Therefore, it can be concluded that the total flexibility of the backfill and shear strength of the strip footing have been increased by adding the TDA. The results indicate that, a significant increase in the failure vertical stress of the footing is observed at the optimum mixture content. In addition, the TDA increases the elasticity behaviour of the backfill.

Study on Fly Ash as a New Raw Material in Paperboard Process (제지용 신규원료 플라이애시의 적용 가능성 평가)

  • Kim, Chul-Hwan;Lee, Ji-Young;Lee, Hui-Jin;Gwak, Hye-Jeong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.4
    • /
    • pp.78-83
    • /
    • 2010
  • In this study, the possibility of the use of a new raw material in paperboard industry was investigated. Fly ash is one of the residues generated in the combustion of coal and generally captured from the chimney of coal-fired power plant. This material is utilized in many industries including cement, soil stabilization, composite etc., but it is not used in paper industry. Three types of fly ashes were collected from Hadong, boryeong and Seocheon steam power plants and we investigated their properties by scanning electron micrographs and particle size distribution. Papers were manufactured with KOCC and fly ashes, and the physical properties such as bulk, tensile strength, internal bond strength and ISO brightness were measured to identify the effects of fly ash on the paper properties.

Vegetation Influences on the Slope Stabilization (식생(植生)이 비탈면의 안정(安定)에 미치는 영향)

  • Woo, Bo Myeong
    • Journal of Korean Society of Forest Science
    • /
    • v.35 no.1
    • /
    • pp.47-55
    • /
    • 1977
  • As the development of national lands increase, the necessity to develop less favorable terrain also increases. It also becomes more difficult and complicated to provide access that is both economical and safe from contributing to soil erosion on roadsides and to londscape damages. Because of the increased and justified emphasis upon environmental degradation, proper stabilization of the cut-and bank slopes of roadsides, plant sites and building sites in Korea requires careful planning as well as execution of the constructions. All fill slopes should be compacted to a degree consistent with design standards and material properties. Drainage facilities should be provided to prevent damaging concentrations of surface runoff and to avoid high pore pressures in cuts and fills. All surfaces of cut-fill slopes should be revegetated with suitable species as soon as possible after construction. To stabilize the cut-fill slopes of highway roadsides should be considerded the factor of stabilization as well as landscape conservation especially. Such basic influences as the effects of vegetations on water balance of rain fall, on the control of surface erosion and on the surface slope failures are briefly discussed in the report.

  • PDF

Evaluation of Durability and Slope Stability of Green Soil using Cementitious Materials (시멘트 계 재료를 사용한 녹생토의 내구성 및 사면 안정성 평가)

  • Kim, Il-Sun;Choi, Yoon-Suk;Yang, Eun-Ik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.45-53
    • /
    • 2018
  • Among the various slope stabilization methods, the green soil method based on the growth of plants is advantageous to the environment, but the durability and slope stability are insufficient when the green soil method is applied to a steep slope and rock slope sites. Therefore, in this study, green soil, which improved the adhesion performance and the vegetation environment, was developed using cementitious materials and ECG, and the durability and slope stability as well as the possibility of its use as a rock vegetation base material were assessed. From the results, the adhesive force and internal friction angle were higher than that of the existing green soil so that it could be used for in situ construction. The soil hardness value was 26 mm, which was slightly higher than that of the best growth condition of the plant, 18~23 mm, and the drying shrinkage strain was approximately 3%; hence, it is not expected to affect the durability of green soil. The results of a rainfall intensity simulation for evaluating the slope adhesion force showed that slope failure did not occur under all conditions. The damage decreased with increasing slope angle. Therefore, the green soils developed in this study have excellent durability and slope stability and can be used for rock slope sites.

Correlation between Casagrande Test and Fall Cone Test Methods and their Applicability in Ground Improvement (카사그란데방법과 원추관입시험방법의 상관관계와 지반개량제의 적용성에 대한 연구)

  • Ko, Kun-Woo;Yeo, Dong-Jun;Kim, Kyung-Min;Lee, Byung-Suk
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.2
    • /
    • pp.5-17
    • /
    • 2023
  • In this study, a classification and uniaxial compression test of soil was conducted on 15 collapsed sites to use ground improvement with excellent protection effect owing to the increase of localized heavy rain in Korea. The Casagrande method and fall cone test were performed on the field soil to derive an expression for comparing liquid limit and plastic limit values, soil classification, and correlation between each other. By deriving the optimal mixing ratio of the ground improvement agent using uniaxial compressive strength for each soil classification, the classification of the fine-grained soil was not clear owing to the proficiency difference and test error. However, after classifying using the fall cone test, it was possible to suggest a clear optimal mixing ratio.

KINKING DEFORMATION OF PVD UNDER CONSOLIDATION OF NATURAL CLAY LAYER

  • Aboshi, Hisao;Inoue, Toshiyuki;Yamada, Yoshimitsu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.349-356
    • /
    • 2003
  • Almost every material of PVD (Prefabricated Vertical Drain) has the fatal problem on the condition - the length must shorten with the settlement of the surrounding grounds - which all PVDs must satisfy. Kinking deformation by buckling of PVD due to consolidation settlement Is discussed in this paper. A new testing device to clarify the deformation of PVD under consolidation of surrounding clay was developed and the fiber drain and a PVD made of plastics were compared under the same condition of consolidation using natural clay specimens. The results are also shown in this paper.

  • PDF

SOIL STABILIZATION USING GEOCELL (지오셀(GEOCELL)을 이용한 지반 안정)

  • 이진웅;이종덕
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1993.10a
    • /
    • pp.33-42
    • /
    • 1993
  • Geocell is a three dimensional cellular confinement system that forms a reocomposite mattress with infill material to increase the bearing capacity dramatically rather than geotextiles of nonwoven and woven fabric type and geogrid. In terms of design, this geocell confinement is quite complex to assess and is different in its hieoretical evaluation and its concept from other geosynthetic products. Thsi study is aimed to help a basic understanding on Geoweb system, which is known to be the most effective and easiest in handling among the geocell systems ever developed, by introducing two method of interpretation for the improvement of bearing capacity. Thus the writers are sillingly to help the geotechnical engineers and the site engineers who might be encountered with the bearing capacity problems on site.

  • PDF

A Study on the Characteristic of Bearing Capacity in Sandy Ground Reinforced by a Layer of Geotextile (한 층의 지오텍스타일로 보강된 모래지반의 지지력 특성에 관한 연구)

  • Park, Yongboo;Joo, Ingon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.5
    • /
    • pp.67-77
    • /
    • 2006
  • Bearing capacity of soil can be improved by several conventional ground improvement techniques like stabilization and compaction. Recently, the necessity on the reseaches for the bearing capacity of footing reinforced by Geotextile is being significantly increased. In this paper, a series of model tests on sandy ground reinforced by a layer of Geotextile were performed under plane strain condition, and the effects of bearing capacity improvement and behaviour of sandy ground were observed through tests for position and horizontal length, material strength of reinforcement.

  • PDF

A Study on the Stabilization of Coal Ash Ground by Geotechnical Engineering Analysis Cam-clay model for Deformation Analysis of Coal Ash Ground (토질공학적 해석방법에 의한 석탄회 폐기물지반의 안정처리에 관한 연구 -지반변형해석을 위한 Cam-clay model을 중심으로)

  • 천병식
    • Geotechnical Engineering
    • /
    • v.14 no.1
    • /
    • pp.81-92
    • /
    • 1998
  • Coal ash from thermal power plants has been produced in large quantity and discarded uselessly, However, it is possible to supply construction material properly by utilizing the coal ash as construction material. In this study, the applicable model and its applicability for deformation analysis of coal ash fill and reclamation ground are studied. Camflay model gives complete constitutive law which illustrates deformation and pore water pressure while soil is loaded under the various stresses at drained and undrained conditions. The merit of proposed model which is acquired from laboratory tests is that only a few soil parameters are available. The whole parameters of Camflay model are obtained by typical mechanical test and CV triaxial test on the sample with optimum mixing ratio( i.e. fly ash : bottom ash=5:5) Then the results from proposed numerical analysis are compared with laboratory results. The differences between laboratory test and numerical analysis are negligible. Parameters deter mined from laboratory tests are useful as a basic data for deformation analysis of coal ash reclamation ground using Camflay model.

  • PDF

Analysis by Environmental Factor of Similar Closed Non-sanitary Landfills (사용종료된 유사비위생 매립지들의 환경인자 분석)

  • Lee, Byungchan;Lee, Minhee;Park, Sangchan;Jeong, Seonki;Han, Yangsu;Yeon, Ikjun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.6
    • /
    • pp.27-33
    • /
    • 2009
  • In this study, it was analysed physical characteristics, TS, moisture, C/N ratio, leaching test, and element analysis in landfill wastes of 10 years old without landfill pretreatment. The Organic material content was 7.2%~23.5% and soil was the main inorganic materials which it's rate was 54.1%~71.0%, in landfill wastes. The results of TS, VS, and moisture were represented 51.5%~68.1%, 23.6%~56.1%, 32.0%~48.4%, respectively. The analysis of hazardous materials did not indicate Hg, $Cr^{+6}$, CN, Organic Phosphorus, TCE and PCE, however the Pb of leaching materials showed 0.023~0.092 mg/L, which was the highest. As the result of the element analysis, C was 47.74%~56.72%, N was 4.09%~9.92%, the C/N ratio was 5.76~12.57 and the result of soils around landfill was the highest heavy material, Pb, 2.465 mg/kg~10.251 mg/kg. The objectives of this paper are to investigate states, stabilization of these closed landfills and to gain suitable data for post-closure care using some parameters through analysis of landfill environment.

  • PDF