• Title/Summary/Keyword: Soil Particles

Search Result 674, Processing Time 0.028 seconds

Discrete Element Method (DEM) Analysis of Soil Plug Formation in Impact-Driven Open-ended Piles (이산요소해석법을 활용한 개단말뚝의 관내토 거동 분석)

  • Kim, Youngsang;Kim, Mintae
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.4
    • /
    • pp.145-154
    • /
    • 2024
  • This study used the discrete element method (DEM) to model the driving process of open-ended piles and investigate the behavior of soil plug during pile penetration. The developed DEM model was verified by comparing model pile test results and numerical analysis, particularly using a contact model considering rolling resistance between soil particles. The study successfully simulated soil compression inside the pile by adjusting the relative density and penetration velocity, and it was confirmed that the soil plug tended to be more compressed as the initial penetration velocity decreased. Soil plug length measurements, plug length ratio, and incremental filling ratio were analyzed and validated against experimental results. The developed DEM model aims to reduce trial and error in further studies by detailing the modeling and verification process.

Studies on Characteristics of Natural Shell Sand as a Soil Amendment (자연패사(自然貝砂)의 특성(特性)과 토양산도(土壤酸度) 교정력(矯正力)에 관(關)한 연구(硏究) -(제주도(濟州道) 및 진도산(珍島産을) 중심(中心)으로)-)

  • Lee, Yun-Hwan;Han, Ki-Hak;Park, Young-Dae;Kim, Bok-Jin;Hur, Il-Bong
    • Applied Biological Chemistry
    • /
    • v.15 no.3
    • /
    • pp.241-249
    • /
    • 1972
  • The characteristic and efficiency of natural shell sand in the coast of Cheju-Do and Jin-Do were studied to apply as agricultural lime for the soil acid adjustment. 1. The alkalinity of shell sand from Cheju coast was higher than that of Jindo and more weathered into fine particles. The particle size distributions of Cheju shell sand were condensed finer particles than 32 mesh in Cheju shell sands and in more coarser particles than 32 mesh in Jindo one. 2. The effect of Cheju shell sand on increasing soil pH value in the upland condition was low at the beginning but more gradually increased after 8 weeks from the treatment than ground lime, and Jindo was very dull during the period of treatment. The commercial lime crushed from Jindo was approximately equal to the ground lime. 3. In the submerged condition, the shell sand of Cheju reacted with soil acid more quickly than ground lime after 2 days, and Jindo was very slow. 4. The relative efficiency of various particle size fraction of the shell sand was superior to the ground lime. The lime particles between 9 to 14 mesh and 20 mesh had more remarkable difference of pH value than other fine particles. The efficiency among finer sizes than 20 mesh particle was approximately equal to each others. 5. The shell sand from the Cheju would be applied directly as agricultural lime without any treatment, and Jindo also can be expected to be effective as agricultural lime with crushing procedure.

  • PDF

Soil Layer Distribution and Soil Characteristics on Dokdo (독도의 토층 분포 및 토질 특성)

  • Kyeong-Su Kim;Young-Suk Song;Eunseok Bang
    • The Journal of Engineering Geology
    • /
    • v.33 no.3
    • /
    • pp.475-487
    • /
    • 2023
  • We surveyed the distribution of soil layers on Dongdo and Seodo of Dokdo and measured the physical properties of the soils. To investigate the distribution of soil layers, the soil depth was measured directly in accessible locations, and visual observations of inaccessible locations were carried out using drones and boats. Soil depths ranged from 3 to 50 cm, and most soil layers had depths of 10~20 cm. Based on these results, a map of the soil layer was drawn using 5 cm intervals for soil depth. To analyze the soil characteristics of Dokdo, soil samples were collected from 13 locations on Dongdo and 13 locations on Seodo, in consideration of various geological settings. According to the results of grain size distribution tests, sand contents were >75%, and soil from Seodo contained more gravel-sized particles than that from Dongdo. Using the unified soil classification system (USCS) and textural classification chart of the United States Department of Agriculture (USDA), most of the soil samples from Dokdo are classified as sand, and some are classified as loamy or clayey sand. In addition, well-graded loamy or clayey sands are more common in Dongdo, and poorly graded sands with gravel are more common in Seodo. These results are expected to be important for studying soil characteristics on Dokdo.

Distribution characteristics of organophosphorous pesticides in Asan Bay, Korea (아산만 해역의 유기인계농약 분포특성)

  • Choi Jin-Young;Yang Dong-Beom;Ju Hyo-Jung;Kim Kyung-Tae;Hong Gi-Hoon;Shin Kyoung-Hoon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.3
    • /
    • pp.176-186
    • /
    • 2006
  • Distribution characteristics of organophosphorous pesticides(OPs) in water and suspended particles were studied in Asan Bay, Korea, from June 2004 to October 2005. 28 organophosphorous pesticides could be detected in Asan Bay during this study. The most commonly and abundantly measured OPs in the surface waters were IBP (max=$6,343.7ng\;l^{-1}$). DDVP, diazionon, ethoprophos and methidathion were also observed at relatively high concentrations. Their maximum concentrations exceeded $100ng\;l^{-1}$ in almost every month. Malathion, mevinphos, ph orate and chlorfenvinphos were also detected at relatively high concentrations. Many OPs more frequently appeared in summer than in winter due to the intensive application of pesticides in summer months. The concentration of OPs generally decreased with increasing distance from the mouth of Asan Bay. This result implies progressive dilution of these pesticides in the marine environment. Measured concentrations of diazinon were well below $20,000ng\;l^{-1}$ which is a limit set by the seawater quality standard of Korea. The concentrations of malathion and parathion in the surface waters of Asan Bay did not exceed the seawater quality standard of Korea($250,000\;and\;60,000ng\;l^{-1}$ respectively). OPs adsorbed on suspended particles were also studied. DDVP, phorate, stirofos, EPN, azinphos-methyl and IBP had higher adsorption capacity onto suspended particles than other pesticides. Calculated pesticide-particle adsorption coefficient($K_d-particle$) for samples collected in Asan Bay were closely related to the reported pesticides-soil adsorption coefficient ($K_d-soil$).

  • PDF

Elastic Wave Characteristics in Cemented Engineered Soils (고결된 Engineered Soils의 탄성파 특성)

  • Lee, Chang-Ho;Yoon, Hyung-Koo;Lee, Woo-Jin;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.2
    • /
    • pp.87-97
    • /
    • 2008
  • Behaviors of cemented engineered soils, composed of rigid sand particle and soft rubber particle, are investigated under $K_o$ condition. The uncemented and cemented specimens are prepared with various sand volume fractions to estimate the effect of the cementation in mixtures. The vertical deformation and elastic wave velocities with vertical stress are measured. The bender elements and PZT sensors are used to measure elastic wave velocities. After cementation, the slope of vertical strain shows bilinear and is similar to that of uncemented specimen after decementation. Normalized vertical strains can be divided into capillary force, cementation, and decementation region. The first deflection of the shear wave in near field matches the first arrival of the primary wave. The elastic wave velocities dramatically increase due to cementation hardening under the fixed vertical stress, and are almost identical with additional stress. After decementation, the elastic wave velocities increase with increase in the vertical stress. The effect of cementation hinders the typical rubber-like, sand-like, and transition behaviors observed in uncemented specimens. Different mechanism can be expected in decementation of the rigid-soft particle mixtures due to the sand fraction. a shape change of individual particles in low sand fraction specimens; a fabric change between particles in high sand fraction specimens. This study suggests that behaviors of cemented engineered soils, composed of rigid-soft particles, are distinguished due to the cementation and decementation from those of uncemented specimens.

Distribution and Migration Characteristics of Explosive Compounds in Soil at Military Shooting Ranges in Gyeonggi Province (경기도 북부지역 군용 사격장 토양에 존재하는 화약물질 분포 및 이동 특성 조사)

  • Bae, Bumhan;Park, Jieun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.6
    • /
    • pp.17-29
    • /
    • 2014
  • A remedial investigation was conducted at five military training ranges in northern Gyeonggi province to collect information necessary for the design of on-site treatment facilities for the abatement of explosive compounds release to the environment. These information includes (i) identification of dominant explosive compounds in each range, (ii) discharge/migration routes, and (iii) contaminant distribution in particle size fraction and settling velocity of the soils. The results of investigation showed that TNT and RDX are the major contaminants but the extent of contamination varied depending on the types of military training practices and topography of the site. RDX was also detected in the subsurface soil and in the nearby stream within the training ranges, suggesting release of contaminants to streams. The median concentrations of explosives in the surface soil were less than 20 mg/kg despite several 'hot spots' in which explosives concentrations often exceeds several hundred mg/kg. The average clay contents in the soil of target area was less than 5 % compared to 12 % in the control, indicating loss of smaller particles by surface runoff during rainfall due to lack of vegetative land cover. Analysis of explosive compounds and particle size distribution showed that the amount of explosive compounds in soil particles smaller than 0.075 mm was less than 10 % of the total. Settling column tests also revealed that the quantity of explosive compounds in the liquid phase of the effluent was greater than that in the solid phase. Therefore, pre-treatment of particulate matter in surface runoff of shooting range with a simple settling basin and subsequent effluent treatment with planted constructed wetlands as polishing stage for explosives in the aqueous phase would provide the shooting ranges with a self-standing, sustainable, green solution.

Adsorption and Transfer of Trace Elements in Repellent Soils (토양 소수성에 따른 미량원소의 흡착 및 이동)

  • Choi, Jun-Yong;Lee, Sang-Soo;Ok, Yong-Sik;Chun, So-Ul;Joo, Young-Kyoo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.204-208
    • /
    • 2012
  • Water repellency which affects infiltration, evaporation, erosion and other water transfer mechanisms through soil has been observed under several natural conditions. Water repellency is thought to be caused by hydrophobic organic compounds, which are present as coatings on soil particles or as an interstitial matter between soil particles. This study was conducted to evaluate the characteristics of the water repellent soil and transport characteristics of trace elements within this soil. Capillary height of the water repellent soil was measured. Batch and column studies were accompanied to identify sorption and transport mechanism of trace elements such as $Cu^{2+}$, $Mn^{2+}$, $Fe^{2+}$, $Zn^{2+}$ and $Mo^{5+}$. Difference of sorption capacity between common and repellent soils was observed depended on the degree of repellency. In the column study, the desorption of trace elements and the spatial concentration distribution as a function of time were evaluated. The capillary height was in the repellency order of 0% > 15% > 40% > 70% > 100%. No water was absorbed in soil indicating >70% repellency. Using trace elements, $Fe^{2+}$ and $Mo^{5+}$ showed higher sorption capacity in the repellent soil than in non-repellent soil. The sorption performance of $Fe^{2+}$ was found to be in the repellency order of 40% > 15% > 0%. Our results found that transfer of $Mo^{5+}$ had similar sorption tendency in soils having 0%, 15% and 40% repellency at the beginning, however, the higher desorption capacity was observed as time passes in the repellent soil compared to in non-repellent soils.

Removal of Silica and Humic Acid from Brackish Water with Calcite (Calcite를 이용한 brackish water 내의 실리카와 휴믹산의 제거에 관한 연구)

  • 박소희;박재우
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.243-245
    • /
    • 2002
  • Brackish water desalination using reverse osmosis(RO) membrane is more useful and economic than sea water to solve the shortage of fresh water supply because of its low total dissolved solid(TDS) contents. Silica and humic acid in brackish water make serious fouling problems and cause the decline of permeate flux and increase of operating pressure. In this study, the experiments for removal of silica and humic acid were conducted with calcite particles to prevent membrane fouling and investigated the effect of pH of feed water Adsorption of silica to calcite was higher at pH=7.5 than 9.5 and removal rate was increased according to increase of initial concentration of silica. The effect of pH on adsorption of humic acid was not significant but at low initial concentration the adsorption of humic acid was enhanced at pH 7.5. The result of this study expect to apply to brackish water desalination experiment of flat-sheet reverse osmosis membrane.

  • PDF

Possibility of cementation of soft soil using Bacteria (Bacteria를 이용한 연약한 흙의 고결화 가능성)

  • Kim, Dae-Hyeon;Kim, Ho-Chul;Park, Kyoung-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.379-391
    • /
    • 2010
  • In order to understand the mechanism of cementation of soft soils treated with bacteria, three types of specimens(untreated, normal bacteria concentration treated, and high bacteria concentration treated) were made. Scanning Electron Microscope(SEM), EDX and X-ray diffraction(XRD) analyses were performed on the soft silt and loose sand specimens. Compared with the untreated specimen, a clearer cementation between particles was observed in the high bacteria concentration treated specimen. Based on the scanning electron microscope(SEM) EDX analyses, more calcium carbonate was observed in the specimen treated with high bacteria concentration than other specimens. On the basis of the preliminary results, it appears that microbial cementation can occur in the soft soil. Further study on the cementation of soils using bacteria is necessary to validate this result.

  • PDF

A Study of Sedimentation Processes of Saemangeum Reclamation(II) - A Study of Sedimentation Processes after Saemangeum Reclamation - (새만금간척 퇴적과정에 관한 연구(II) -새만금간척 시행 후를 중심으로-)

  • 신문섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.5
    • /
    • pp.33-40
    • /
    • 2002
  • The purpose of this study is to find the variation of sedimentation patterns after Saemangeum reclamation. Residual flow after Saemangeum reclamation was calculated prognostically from the observed water temperature and salinity data in May 1992 by the Marine Development Institute of Gunsan National University and wind data which were obtained from spring 1969 through winter 1977 by the Kunsan Meteorological Observatory. Three dimensional movements of injected particles due to currents, turbulence and sinking velocity are tracked by the Euler-Lagrange method. When suspended sediments with the size of soil grain of 30 ㎛ are injected in the Sinsi drainage sluice, their dispersion range of sediment is around Gogunsan islands. When suspended sediments with the size of soil grain of 200 ㎛ are injected in the Garyeok drainage sluice, their dispersion range of sediment was around the Garyeok drainage sluice and Byeonsan coastal area.