• 제목/요약/키워드: Soil Particles

검색결과 672건 처리시간 0.028초

Effects of fines content on void ratio, compressibility, and static liquefaction of silty sand

  • Lade, Poul V.;Yamamuro, Jerry A.;Liggio, Carl D. Jr.
    • Geomechanics and Engineering
    • /
    • 제1권1호
    • /
    • pp.1-15
    • /
    • 2009
  • Many aspects of the behavior of sands are affected by the content of non-plastic fine particles and these various aspects should be included in a constitutive model for the soil behavior. The fines content affects maximum and minimum void ratios, compressibility, shear strength, and static liquefaction under undrained conditions. Twenty-eight undrained triaxial compression tests were performed on mixtures of sand and fine particles with fines contents of 0, 10, 20, 30, 50, 75, and 100% to study the effects of fines on void ratio, compressibility, and the occurrence of static liquefaction. The experiments were performed at low consolidation pressures at which liquefaction may occur in near-surface, natural deposits. The presence of fines creates a particle structure in the soil that is highly compressible, enhancing the potential for liquefaction, and the fines also alter the basic stress-strain and volume change behavior, which should be modeled to predict the occurrence of static liquefaction in the field. The void ratio at which liquefaction occurs for each sand/fines mixture was determined, and the variation of compressibility with void ratio was determined for each mixture. This allowed a relation to be determined between fines content, void ratio, compressibility, and the occurrence of static liquefaction. Such relations may vary from sand to sand, but the present results are believed to indicate the trend in such relations.

전기 저항열을 이용한 유류 오염토 복원공정 적용을 위한 토양의 가열특성 연구 (Heating Characteristics of the Soils for the Application of Electrical Resistance Heating with Soil Vapor Extraction)

  • 윤여복;고석오;박기호;박민호
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제11권1호
    • /
    • pp.45-53
    • /
    • 2006
  • 본 연구에서는 토양의 전기가열 특성을 실험을 통해 규명함으로서, 전기저항열을 이용한 토양증기추출법을 실제 현장에 적용 시 토양가열 효율을 증가시키는 방안을 도출하기 위하여, 반응조를 이용한 토양 종류별 자체 특성에 따른 가열 특성과 외부에서의 전기적 특성의 조절을 통한 가열 특성을 살펴보았다 토양의 업자가 작을수록, 토양 내 이 온이 풍부할수록 전기가열 효율이 증가되었으며, 토양이 물로 포화된 경우에도 전기 가열 효율이 증가하였으나 공극률 이상으로 수분이 있는 경우는 오히려 효율이 떨어졌다. 전압이 증가할수록, 전극 사이가 짧아질수록, 유류 오염된 토양일수록 효율은 증가되었다 본 연구에서는 초기 전류와 전기전도도의 정량적 상관관계를 도출함으로써 직접적인 전기가열 실험 없이 전기전도도로 반응조 내 토양이 $100^{\circ}C$ 온도 상승의 가능성을 예측할 수 있게 됐다.

한라산 1100 고지 총부유분진(TSP)의 조성 및 오염 특성 (Compositions and pollution characteristics of total suspended particles (TSP) at 1100 Site of Mt. Halla)

  • 김원형;강창희;정덕상;고희정;이원
    • 분석과학
    • /
    • 제21권4호
    • /
    • pp.304-315
    • /
    • 2008
  • 한라산 1100 고지에서 채취한 대기 부유분진의 조성은 인위적 기원의 성분들이 가장 높고, 다음으로 해양 기원 성분과 토양 기원 성분들이 높은 함량을 나타내었다. 계절별로는 봄철에 토양 성분인 nss-$Ca^{2+}$, Al, Fe, Ca 성분의 농도가 크게 증가하였고, 인위적 기원의 $NH{_4}^+$, $K^+$, nss-$SO{_4}^{2-}$은 6월에 가장 높은 농도를 보였다. 반면에 $NO{_3}^-$은 봄철에 nss-$Ca^{2+}$과 함께 농도가 상승하였고, 이는 중국으로부터 장거리 이동에 의한 영향으로 추정된다. 황사와 비황사 때의 농도를 비교해 본 결과, 황사 때에 nss-$Ca^{2+}$, Al, Ca, Fe 농도가 7.2~9.5배 증가하였고, nss-$SO{_4}^{2-}$$NO{_3}^-$은 각각 1.3, 3.8배 정도 더 증가한 것으로 확인되었다. 요인분석법으로 분진성분의 발생기원을 조사해 본 결과, 한라산 1100 고지 부유분진은 토양의 영향을 가장 많이 받고, 다음으로 인위적 영향과 해염 영향을 많이 받고 있는 것으로 추정된다. 역궤적분석에 의해 분진 성분의 유입경로를 조사한 결과, 공기덩어리가 중국대륙을 거쳐 제주지역으로 이동한 북서풍 계열의 풍향일 때 주요 인위적 기원의 성분과 토양 성분의 농도가 상승하고, 공기가 북태평양을 거쳐 제주지역으로 유입되었을 때 이들 성분들의 농도가 상대적으로 감소하는 경향을 보였다.

Altitudinal Variation in Species Composition and Soil Properties of Banj Oak and Chir Pine Dominated Forests

  • Kumar, Munesh;Singh, Harpal;Bhat, Jahangeer A.;Rajwar, G.S.
    • Journal of Forest and Environmental Science
    • /
    • 제29권1호
    • /
    • pp.29-37
    • /
    • 2013
  • The study was carried out in two different forest types viz., Banj oak and Chir pine forests to assess the variation in forest species composition and soil properties along altitudinal gradients in the Garhwal Himalayas. The results of the study showed that between the forests soil moisture was higher in Banj oak forest because of closed canopy and dense forest compared to Chir pine forest. The sand particles were reported higher in Banj oak forest which might be due to the addition of organic matter favouring coarse structure of soil, helping in holding maximum water in soils. However in the Chir pine forest low amount of soil organic matter and presence of clayey soil, develops soil compactness which reduces the penetration of water resulting in high soil bulk density. The higher accumulation of litter and presence of moisture in Banj oak forest favours higher nutrient level of nitrogen, phosphorus and potassium compared to Chir pine forest. The soil organic carbon also reduced with increasing altitude at both gradients. While bulk density has reverse trend with soil organic carbon in both the forests at different peaks of same region. In Banj oak forest, the highest density and total basal cover was reported 1,100 tree $ha^{-1}$ and 58.86 $m^2\;ha^{-1}$ respectively. However, the highest values of density and total basal cover of Chir pine forest was 560 tree$ha^{-1}$ and 56.94 $m^2\;ha^{-1}$ respectively. The total density and basal cover of both the forests reduced with increasing altitude. The study concludes that Banj oak forest has better nutrient cycling ability, well developed foest floor and has a greater protective and productive features compared to the Chir pine forest which is without lower vegetation cover and having only pine litter accumulation which does not allow any other species to grow.

Separation of soil Organic Debris using Sucrose-ZnCl2 Density Gradient Centrifugation

  • Jung, Seok-Ho;Chung, Doug-Young;Han, Gwang-Hyun
    • 한국토양비료학회지
    • /
    • 제45권1호
    • /
    • pp.30-36
    • /
    • 2012
  • The active fraction of soil organic matter, which includes organic debris and light organic fraction, plays a major role in nutrient cycling. In addition, particulate organic matter is a valuable index of labile soil organic matter and can reflect differences in various soil behaviors. Since soil organic matter bound to soil mineral particles has its density lower than soil minerals, we partitioned soil organic matter into debris ($<1.5g\;cm^{-3}$), light fraction ($1.5-2.0g\;cm^{-3}$), and heavy fraction ($>2.0g\;cm^{-3}$), based on high density $ZnCl_{2-}$ sucrose solutions. Generally, partitioned organic bands were clearly separated, demonstrating that the $ZnCl_{2-}$ sucrose solutions are useful for such a density gradient centrifugation. The available gradient ranges from 1.2 to $2.0g\;cm^{-3}$. Although there was not a statistically meaningful difference in organic debris and organomineral fractions among the examined soils, there was a general trend that a higher content of organic debris resulted in a higher proportion of light organomineral fraction. In addition, high clay content was associated with increased fraction of light organomineals. Partitioning of soil organic carbon revealed that carbon content is reduced in the heavy fraction than in the light fraction, reflecting that the light fraction contains more fresh and abundant carbon than the passive resistant fraction. It was also found that carbon contents in the overall organic matter, debris, light fraction, and heavy fractions may differ considerably in response to different farming practices.

원자력발전소 토양에 대한 파일롯 규모 토양세척기술 실증 (Verification of Pilot Scale Soil Washing Equipment on Nuclear Power Plant Soil)

  • 손중권;강기두;김학수;박경록;김경덕
    • 방사성폐기물학회지
    • /
    • 제2권4호
    • /
    • pp.245-251
    • /
    • 2004
  • 원전의 정상운전이나 해체시 발생될 수 있는 토양의 제염을 위한 토양제염장치를 개발하였으며 실증 실험을 수행하였다. 제염장치를 이용한 제염실험을 종합해본 결과 제염조건에 큰 상관없이 $80{\%}$이상의 제염율을 얻을 수 있었다. 방사능 준위 및 토양입도에 의한 실험결과를 보면 낮은 방사능 농도 및 고입도의 제염율이 다소 높음을 알 수 있었다. 제염용액과 토양질량의 비에 따른 제염율은 제염제 부피를 두배로 높였을 경우 방사능 농도가 높은 경우에 큰 것으로 나타났다. 반복 제염은 $0.5{\sim}2.0mm$의 다소 작은 입자에 더욱 효과적으로, 제염이 어려운 작은 입자의 반복제염시 방사능 저감 효과가 비교적 크게 나타났다. 본 오염토양 제염장치를 활용하면 원전에서 발생되는 오염토양의 방사능 농도를 줄일 뿐 아니라 처분양을 줄여 저장공간의 확보에 기여할 뿐만 아니라 향후 원전의 해체시에도 유용하게 활용될 수 있으리라 생각된다.

  • PDF

Micromorphological Features of Pan Horizon in the Soils Derived from Different Parent Materials

  • Zhang, Yongseon;Sonn, Yeon-Kyu;Moon, Yong-Hee;Jung, Kangho;Cho, Hye-Rae;Han, Kyeong-Hwa
    • 한국토양비료학회지
    • /
    • 제47권4호
    • /
    • pp.242-248
    • /
    • 2014
  • We have five soil series of pan soils in South Korea out of 391 series: Gangreung, Bugog, Yeongog, Jangweon, and Pogog. Productivity decreases in pan soils as pan horizons impede percolation and capillary rise of water and interrupt root extension. This study was performed to investigate pedogenic processes of pan soils mainly located in footslope and river terrace by analyzing physicochemical properties and soil micro-morphology. Korean pan soils belong to Alfisols, Ultisols, or Inceptisols and have udic or aquic soil moisture regime, mesic temperature regime, and mixed mineral substances. Texture of pan horizons selected for the present study was mainly silty clay loam with clay contents ranging from 26.3 to 45.3%. Bulk density of the pan horizons ranged from 1.4 to $2.1Mg\;m^{-3}$ and their soil structure were subangular or angular structure. In terms of micro-morphological structure, Bt horizon of Gangreung series was formed as platy and striated b-fabric structure possibly affected by uplift of coastal terrace following clay sedimentation by flood. Jangweon series showed micro-morphology of massive structure and crystallic b-fabric as macropores between coarse debris established by debris fall in slope were filled with silt-sized particles. The Bt horizons having massive structure and striated b-fabric in Yeongog, Pogog, and Bugog series implies that those horizons experienced horizontal mass flow after clay accumulation.

Effects of mining activities on Nano-soil management using artificial intelligence models of ANN and ELM

  • Liu, Qi;Peng, Kang;Zeng, Jie;Marzouki, Riadh;Majdi, Ali;Jan, Amin;Salameh, Anas A.;Assilzadeh, Hamid
    • Advances in nano research
    • /
    • 제12권6호
    • /
    • pp.549-566
    • /
    • 2022
  • Mining of ore minerals (sfalerite, cinnabar, and chalcopyrite) from the old mine has led in significant environmental effects as contamination of soils and plants and acidification of water. Also, nanoparticles (NP) have obtained global importance because of their widespread usage in daily life, unique properties, and rapid development in the field of nanotechnology. Regarding their usage in various fields, it is suggested that soil is the final environmental sink for NPs. Nanoparticles with excessive reactivity and deliverability may be carried out as amendments to enhance soil quality, mitigate soil contaminations, make certain secure land-software of the traditional change substances and enhance soil erosion control. Meanwhile, there's no record on the usage of Nano superior substances for mine soil reclamation. In this study, five soil specimens have been tested at 4 sites inside the region of mine (<100 m) to study zeolites, and iron sulfide nanoparticles. Also, through using Artificial Neural Network (ANN) and Extreme Learning Machine (ELM), this study has tried to appropriately estimate the mechanical properties of soil under the effect of these Nano particles. Considering the RMSE and R2 values, Zeolite Nano materials could enhance the mine soil fine through increasing the clay-silt fractions, increasing the water holding capacity, removing toxins and improving nutrient levels. Also, adding iron sulfide minerals to the soils would possibly exacerbate the soil acidity problems at a mining site.

1997~2001년 제주도 고산지역 PM2.5 미세분진의 오염 특성 (Pollution Characteristics of PM2.5 Fine Particles Collected at Gosan Site in JeJu Island during 1997~2001)

  • 강창희;김원형;한진석;선우영;문길주
    • 한국대기환경학회지
    • /
    • 제19권3호
    • /
    • pp.263-273
    • /
    • 2003
  • P $M_{2.5}$ fine particles have been collected at the Cosan measurement station in Jeju Island, and the major water-soluble components have been analyzed in order to Investigate the aerosol compositions and pollution characteristics. The mean concentrations of the components were in the order of S $O_4$$^{2-}$> N $H_4$$^{+}$> N $O_3$$^{[-10]}$ > N $a^{+}$> $K^{+}$>C $l^{[-10]}$ >C $a^2$$^{+}$>M $g^2$$^{+}$. The major components were S $O_4$$^{2-}$, N $H_4$$^{+}$ and N $O_3$$^{[-10]}$ , whose compositions were 58%, 18% and 10% of the total ions, respectively. Most of the components showed higher concentrations in spring season, and especially $Ca^2$$^{+}$, N $O_3$$^{[-10]}$ and S $O_4$$^{2-}$ concentrations were increased 2.8, 1.9 and 1.2 times higher than the annual mean concentrations. The most parts of S $O_4$$^{2-}$ and N $H_4$$^{+}$ were distributed in fine particles below 2.1 ${\mu}{\textrm}{m}$ size, but the $Ca^2$$^{+}$, N $a^{+}$ and C $l^{[-10]}$ showed relatively higher concentrations in coarse particles. Based on the factor analysis, the P $M_{2.5}$ fine particles were considered to be largely influenced by anthropogenic sources, and followed by sea salt and soil sources. In the variations of concentrations as a function of wind direction, most components have shown higher concentrations notably as the northwesterly prevails.thwesterly prevails.

Arbitrary Lagrangian-Eulerian 기법에 의거한 콘 관입 해석 (An Analysis of Cone Penetration Based on Arbitrary Larangian-Eulerian Method)

  • Oh, Se-Boong
    • 한국지반공학회논문집
    • /
    • 제17권6호
    • /
    • pp.85-98
    • /
    • 2001
  • Arbitrary Lagrangian-Eulerian(ALE) 기법에 의거하여 콘 관입문제를 해석하였다. 완전한 관입을 모의하기 위하여 ABAQUS/Explicit을 이용하여 지반의 상향 유동을 모델링하는 정상상태해석(steady state analysis)을 수행하였다. 단일 지층의 해석에서는 흙 입자의 유동 경로와 변형률이 strain path method와 일관된 결과를 나타내고 있음을 확인하였고 극한저항을 합리적으로 계산할 수 있었다. 상이한 지층에 콘을 관입하는 경우에 대해서도 콘 저항이 전이하는 경향을 해석할 수 있었다. 따라서 ALE 해법의 정상상태해석으로 층상 지층에 대한 완전한 관입을 해석할 수 있었다.

  • PDF