• Title/Summary/Keyword: Soil Organic Carbon

Search Result 577, Processing Time 0.028 seconds

Impacts of temperature variations on soil organic carbon and respiration at soil erosion and deposition areas

  • Thet Nway Nyein;Dong Kook Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.447-447
    • /
    • 2023
  • Soil organic carbon (SOC) is a critical indicator of soil fertility. Its importance in maintaining ecological balance has received widespread attention. However, global temperatures have risen by 0.8℃ since the late 1800s due to human-induced greenhouse gas emissions, resulting in severe disruptions in SOC dynamics. To study the impacts of temperature variations on SOC and soil respiration, we used the Soil Carbon and Landscape co-Evolution (SCALE) model, which was capable of estimating the spatial distribution of soil carbon dynamics. The study site was located at Heshan Farm (125°20'10.5"E, 49°00'23.1"N), Nenjiang County in Heilongjiang Province, Northeast China. We validated the model using observed soil organic carbon and soil respiration in 2015 and achieved excellent agreement between observed and modeled variables. Our results showed considerable influences of temperature increases on SOC and soil respiration rates at both erosion and deposition areas. In particular, changes in SOC and soil respiration at the deposition area were greater than at the erosion area. Our study highlights that the impacts of temperature elevations are considerably dependent on soil erosion and deposition processes. Thus, it is important to implement effective soil conservation strategies to maintain soil fertility under global warming.

  • PDF

Evaluating Soil Carbon Changes in Paddy Field based on Different Fraction of Soil Organic Matter

  • Seo, Myung-Chul;Cho, Hyeon-Suk;Kim, Jun-Hwan;Sang, Wan-Gyu;Shin, Pyeong;Lee, Geon Hwi
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.736-743
    • /
    • 2015
  • Organic matter plays important roles in soil ecosystem in terms of carbon and nitrogen cycles. Due to recent concerns on climate change, carbon sequestration in agricultural land has become one of the most interesting and debating issues. It is necessary to understand behavior of soil carbon for evaluating decomposition or sequestration of organic matter and analyzing potential carbon decomposition pattern about the kinds of organic matter sources to cope with well. In order to evaluate decomposition of soil carbon according to organic material during cultivating rice in paddy field, we treated organic material such as hairy vetch, rice straw, oil cake fertilizer, and manure compost at $50{\times}50{\times}20cm$ blocks made of wood board, and analyzed carbon contents of fulvic acid and humic acid fraction, and total carbon periodically in 2013 and 2014. Soil sampling was conducted on monthly basis. Four Kinds of organic matter were mixed with soil in treatment plots on 2 weeks before transplanting of rice. The treatment of animal compost showed the highest changes of total carbon, which showed $7.9gkg^{-1}$ in May 2013 to $11.6gkg^{-1}$ in October 2014. Fulvic acid fraction which is considered to easily decompose ranged from 1 to $2gkg^{-1}$. Humic acid fraction was changed between 1 to $3gkg^{-1}$ in all treatments until organic material had been applied in 2014. From May to August in the second year, the contents of humic acid fraction increased to about $4gkg^{-1}$. The average of humic fraction carbon at treatments of animal compost was recorded highest among treatments during two years, $2.1gkg^{-1}$. The treatment of animal compost has showed the lowest ratio of fulvic acid fraction, humic acid fraction compared with other treatments. The average ratio of fulvic fraction carbon in soil ranged from 16 to 20%, and humic fraction carbon ranged from 19 to 22%. In conclusion, animal compost including wood as bulking agent is superior in sequestrating carbon at agricultural land to other kinds of raw plant residue.

Soil organic carbon variation in relation to land use changes: the case of Birr watershed, upper Blue Nile River Basin, Ethiopia

  • Amanuel, Wondimagegn;Yimer, Fantaw;Karltun, Erik
    • Journal of Ecology and Environment
    • /
    • v.42 no.3
    • /
    • pp.128-138
    • /
    • 2018
  • Background: This study investigated the variation of soil organic carbon in four land cover types: natural and mixed forest, cultivated land, Eucalyptus plantation and open bush land. The study was conducted in the Birr watershed of the upper Blue Nile ('Abbay') river basin. Methods: The data was subjected to a two-way of ANOVA analysis using the general linear model (GLM) procedures of SAS. Pairwise comparison method was also used to assess the mean difference of the land uses and depth levels depending on soil properties. Total of 148 soil samples were collected from two depth layers: 0-10 and 10-20 cm. Results: The results showed that overall mean soil organic carbon stock was higher under natural and mixed forest land use compared with other land use types and at all depths ($29.62{\pm}1.95Mg\;C\;ha^{-1}$), which was 36.14, 28.36, and 27.63% more than in cultivated land, open bush land, and Eucalyptus plantation, respectively. This could be due to greater inputs of vegetation and reduced decomposition of organic matter. On the other hand, the lowest soil organic carbon stock under cultivated land could be due to reduced inputs of organic matter and frequent tillage which encouraged oxidation of organic matter. Conclusions: Hence, carbon concentrations and stocks under natural and mixed forest and Eucalyptus plantation were higher than other land use types suggesting that two management strategies for improving soil conditions in the watershed: to maintain and preserve the forest in order to maintain carbon storage in the future and to recover abandoned crop land and degraded lands by establishing tree plantations to avoid overharvesting in natural forests.

Paddy Soil Tillage Impacts on SOC Fractions

  • Jung, Won-Kyo;Han, Hee-Suk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.4
    • /
    • pp.326-329
    • /
    • 2007
  • Quantifying soil organic carbon (SOC) has long been considered to improve our understanding of soil productivity, soil carbon dynamics, and soil quality. And also SOC could contribute as a major soil management factor for prescribing fertilizers and controlling of soil erosion and runoff. Reducing tillage intensity has been recommended to sequester SOC into soil. On the other hand, determination of traditional SOC could barely identify the tillage practices effect. Physical soil fractionation has been reported to improve interpretation of soil tillage practices impact on SOC dynamics. However, most of these researches were focused onupland soils and few researches were conducted on paddy soils. Therefore, the objective of this research was to evaluate paddy soil tillage impact on SOC by physical soil fractionation. Soils were sampled in conventional-tillage (CT), partial-tillage (PT), no-tillage (NT), and shallow-tillage (ST)plots at the National Institute of Crop Science research farm. Samples were obtained at the three sampling depth with 7.5-cm increment from the surface and were sieved with 0.25- and 0.053-mm screen. Soil organic carbon was determined by wet combustion method. Significant difference of SOC contentwas found among sampling soil depth and soil particle size. SOC content tended to increase at the ST plot with increasing size of soil particle fraction. We conclude that quantifying soil organic carbon by physical soil particle fractionation could improve understanding of SOC dynamics by soil tillage practices.

Feasibility of Analyzing Soil Organic Carbon Fractions using Mid-Infrared Spectroscopy (중적외선분광분석법을 이용한 토양 유기 탄소 분획 분석)

  • Hong, Seung-Gil;Shin, JoungDu;Park, Kwang-Lai;Lee, Sang-Beom;Kim, Jinho;Kim, Seok-Cheol;Shiedung, Henning;Amelung, Wulf
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.3
    • /
    • pp.85-92
    • /
    • 2015
  • For concerning the climate change issues, the carbon sequestration and importance of soil organic matter are receiving high attention. To evaluate carbon sequestration in soil is important to determine the soil organic carbon (SOC) fractions such as WESOC (Water extractable soil organic carbon), and $CO_2$ emission by soil microbial respiration. However, the analyses for those contents are time-consuming procedure. There were studied the feasibility of MIRS (Mid-Infrared Spectroscopy), which has short analysis time for determining the WESOC and an incubated carbon in this study. Oven-dried soils at $100^{\circ}C$ and $350^{\circ}C$ were scanned with MIRS and compared with the chemically analyzed WESOC and cumulative carbon dioxide generated during 30, 60, 90, and 120 days of incubation periods, respectively. It was observed that an optimized determination coefficient was 0.6937 between WESOC and untreated soil processed by spectrum vector normalization (SNV) and 0.8933 between cumulative $CO_2$ from 30 days incubation and soil dried at $350^{\circ}C$ after subtracting air-dried soil processed by 1st derivatives. Therefore, it was shown that Quantification of soil organic carbon fractions was possibility to be analyzed by using MIRS.

Statistically estimated storage potential of organic carbon by its association with clay content for Korean upland subsoil

  • Han, Kyung-Hwa;Zhang, Yong-Seon;Jung, Kang-Ho;Cho, Hee-Rae;Seo, Mi-Jin;Sonn, Yeon-Kyu
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.3
    • /
    • pp.353-359
    • /
    • 2016
  • Soil organic carbon (SOC) retention has gradually gotten attention due to the need for mitigation of increased atmospheric carbon dioxide and the simultaneous increase in crop productivity. We estimated the statistical maximum value of soil organic carbon (SOC) fixed by clay content using the Korean detailed soil map database. Clay content is a major factor determining SOC of subsoil because it influences the vertical mobility and adsorption capacity of dissolved organic matter. We selected 1,912 soil data of B and C horizons from 13 soil series, Sangju, Jigog, Jungdong, Bonryang, Anryong, Banho, Baegsan, Daegog, Yeongog, Bugog, Weongog, Gopyeong, and Bancheon, mainly distributed in Korean upland. The ranges of SOC and clay content were $0-40g\;kg^{-1}$ and 0 - 60%, respectively. Soils having more than 25% clay content had much lower SOC in subsoil than topsoil, probably due to low vertical mobility of dissolved organic carbon. The statistical analysis of SOC storage potential of upland subsoil, performed using 90%, 95%, and 99% maximum values in cumulative SOC frequency distribution in a range of clay content, revealed that these results could be applicable to soils with 1% - 25% of clay content. The 90% SOC maximum values, closest to the inflection point, at 5%, 10%, 15%, and 25% of clay contents were $7g\;kg^{-1}$, $10g\;kg^{-1}$, $12g\;kg^{-1}$, and $13g\;kg^{-1}$, respectively. We expect that the statistical analysis of SOC maximum values for different clay contents could contribute to quantifying the soil carbon sink capacity of Korean upland soils.

Organic Carbon Distribution and Budget in the Quercus variabilis Forest in the Youngha valley of Worak National Park (월악산 용하계곡 굴참나무림의 유기탄소 분포 및 수지)

  • NamGung, Jeong;Choi, Hyeon-Jin;Han, A-Reum;Mun, Hyeong-Tae
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.3
    • /
    • pp.170-176
    • /
    • 2008
  • Organic carbon distribution and carbon budget of a Quercus variabilis forest in the Youngha valley of Mt. Worak National Park were investigated. Carbon in above and below ground standing biomass, litter layer, and soil organic carbon were measured from 2005 through 2006. For the estimation of carbon budget, soil respiration was measured. The amount of carbon allocated to above- and below-ground biomass was 56.22 and 13.90 ton C ha$^{-1}$. Amount of organic carbon in annual litterfall was 2.33 ton C ha$^{-1}$ yr$^{-1}$. Amount of soil organic carbon within 50 cm soil depth was 119.14 ton C ha$^{-1}$ 50 cm-depth$^{-1}$. Total amount of organic carbon in this Q. variabilis forest was 193.96 ton C ha$^{-1}$. Of these, 61.43% of organic carbon was allocated in the soil. Net increase of organic carbon in above- and below-ground biomass in this Q. variabilis forest was estimated to 7.68 ton C ha$^{-1}$ yr$^{-1}$. The amount of carbon evolved through soil respiration was 6.21 ton C ha$^{-1}$ yr$^{-1}$. Net amount of 1.47 ton C ha$^{-1}$ yr$^{-1}$ was absorbed from the atmosphere by this Q. variabilis forest.

Budget and distribution of organic carbon in Taxus cuspidata forest in subalpine zone of Mt. Halla

  • Jang, Rae-Ha;Jeong, Heon-Mo;Lee, Eung-Pill;Cho, Kyu-Tae;You, Young-Han
    • Journal of Ecology and Environment
    • /
    • v.41 no.1
    • /
    • pp.19-28
    • /
    • 2017
  • Background: In order to investigate organic carbon distribution, carbon budget, and cycling of the subalpine forest, we studied biomass, organic carbon distribution, litter production, forest floor litter, accumulated soil organic carbon, and soil respiration in Taxus cuspidata forest in Halla National Park from February 2012 to November 2013. Biomass was calculated by using allometric equation and the value was converted to $CO_2$ stocks. Results: The amount of plant organic carbon was $13.60ton\;C\;ha^{-1}year^{-1}$ in 2012 and $14.29ton\;C\;ha^{-1}year^{-1}$ in 2013. And average organic carbon introduced to forest floor through litter production was $0.71ton\;C\;ha^{-1}year^{-1}$. Organic carbon distributed in forest floor litter layer was $0.73ton\;C\;ha^{-1}year^{-1}$ on average and accumulated organic carbon in soil was $51.13ton\;C\;ha^{-1}year^{-1}$ on average. In 2012, Amount of released $CO_2$ from soil to atmosphere was 10.93 ton $CO_2ha^{-1}year^{-1}$. Conclusions: The net ecosystem production based on the difference between net primary production of organic carbon and soil respiration was $-1.74ton\;C\;ha^{-1}year^{-1}$ releasing more carbon than it absorbed.

Evaluation of Soil Carbon Storages in the Organic Farming Paddy Fields (유기 논토양의 토양탄소 저장효과 평가)

  • Han, Yangsoo;Nam, Hong-shik;Park, Kwang-lai;Lee, Youngmi;Lee, Byung-mo;Park, Kee-choon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.1
    • /
    • pp.73-82
    • /
    • 2020
  • This study was conducted to investigate the differences in carbon storage capacity of soil between the conventional and the organic agricultural cultivation followed by the assessment of their economic values. An analysis of 107 samples in the organic and the conventional rice cultivation soils in six regions across South Korea showed that the five regions, Buyeo-II, Gimhae, Sancheong-I, II and Suncheon, had higher organic soil carbon contents than those of values observed on the conventional soils with the exception of the Buyeo-I areas. Based on the results from soil carbon contents, the carbon storage were estimated to be 36.1 megagram carbon (MgC) per ha in the organic paddy soils, while its conventional paddy soils were 29.4 MgC per ha. It showed that the organic paddy soils were 23 % greater than that of its conventional paddy soils. It was estimated that the carbon trading price for economic assessment was ₩758,100 per ha in the organic paddy soil and ₩617,400 per ha in the conventional paddy soil.

Soil Carbon Cycling and Soil CO2 Efflux in a Red Pine (Pinus densiflora) Stand

  • Kim, Choon-Sig
    • Journal of Ecology and Environment
    • /
    • v.29 no.1
    • /
    • pp.23-27
    • /
    • 2006
  • This study was conducted to evaluate forest carbon cycling and soil $CO_2$ efflux rates in a 42-year-old pine (Pinus densiflora) stand located in Hamyang-gun, Korea. Aboveground and soil organic carbon storage, litterfall, litter decomposition, and soil $CO_2$ efflux rates were measured for one year. Estimated aboveground biomass carbon storage and increment in this stand were $3,250gC/m^2\;and\;156gC\;m^{-2}yr^{-1}$, respectively. Soil organic carbon storage at the depth of 30 cm was $10,260gC/m^2$ Mean organic carbon inputs by needle and total litterfall were $176gC\;m^{-2}yr^{-1}\;and\;235gC\;m^{-2}yr^{-1}$, respectively. Litter decomposition rates were faster in nne roots less than 2 mm diameter size ($<220\;g\;kg^{-1}yr^{-1}$) than in needle litter ($<120\;g\;kg^{-1}yr^{-1}$). Annual mean and total soil respiration rates were $0.37g\;CO_2m^{-2}h^{-1}$ and $2,732g\;CO_2m^{-2}yr^{-1}$ during the study period. A strong positive relationship existed between soil $CO_2$ efflux and soil temperature (r=0.8149), while soil $CO_2$ efflux responded negatively to soil pH (r=-0.3582).