• Title/Summary/Keyword: Soil Nutrients

Search Result 783, Processing Time 0.027 seconds

Characterization of landfarming for bioremediation of petroleum-contaminated soil in Korea (유류오염토양의 생물학적 복원을 위한 국내 토양경작기술의 적용 특성)

  • Lee Kwang-Pyo;Lee Cheol-Hyo
    • 한국생물공학회:학술대회논문집
    • /
    • 2004.07a
    • /
    • pp.107-125
    • /
    • 2004
  • A bioremediation of petroleum-contaminated soil in Korea was evaluated for the optimization of enhanced biodegradation and the minimization of effects of seasonal variations, The short-term bioremediation in combination of biopile pretreatment and landfarming was performed by lowering contaminated levels and overcoming the inhibiting factors in the rainy and winter seasons. A microbial density was maintained with indigenous microbial addition for bioaugmentation and with fertilizers for biostimulation. A lesser volatile and biodegradable fraction due to their abiotic removals following the biopile pretreatment was effectively removed by the laterally applied landfarming. The optimal temperature in greenhouse was maintained by buffering of the soil temperature even with slight decreases in removal rates during the winter and extensive leaching of nutrients and contaminants was restricted with adjusting the water contents during the Korean rainy season. Although the tilling process was effective for biodegradation with aeration only, the simultaneous treatment due to apparent mixing of nutrients and microbes more favorably degraded the petroleum than the sequential treatment.

  • PDF

토양의 자연정화능과 다기능성 Colloidal Gas Aphron을 이용한 지하 환경에서의 BTEX 처리기술 개발

  • 박주영;남경필
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.269-272
    • /
    • 2004
  • The use of colloidal gas aphron (CGA), as an external oxygen carrier, provides a promising alternative to promote aerobic bioremediation of BTEX in the subsurface environment. CGA is a stable bubble supported by three surfactant layers and can supply oxygen below the soil surface uniformly due to its plug-flow characteristic. Since CGA has a hydrophobic layer that can act as a partitioning medium for hydrophobic contaminants it is known to facilitate desorption of soil-sorbed contaminants. In addition, bioaugmentation and biostimulation are possibly achieved by using CGA when generated from a solution containing BTEX-degrading microorganisms and appropriate nutrients. In this study, we presented the physico-chemical characteristics of CGA generated from a solution composed of microorganisms and nutrients. The applicability of CGA as an in situ aerobic bioremediation technology of BTEX will be further evaluated.

  • PDF

Effects of the Application of Different Fertilizers on the Forage Productivity and Quality on Newly Reclaimed Hilly Soil III. Mutual balances of mineral nutrients in the soils & mixed forages, and the grass tetany hazard in a mixed grass-clover sward (신개간 산지토양에서 초지조성비 비종별 목초의 생산성 및 품질 비교 III. 토양 및 목초 중 무기양분의 상호균형과 Grass tetany 위험성)

  • 정연규;임요섭;조주식
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.21 no.4
    • /
    • pp.253-258
    • /
    • 2001
  • This pot experiment was conducted to find out the forage productivity and quality in a grasslclover sward as affected by the application of three different fertilizers; double superphosphate(DS), fused Mg-phosphate (FP), and complex fertilizer(CF) on newly reclaimed hilly soil. This part was concerned with the mutual balances of mineral nutrients in the soils and mixed grass/clover sward in relation to grass tetany hazard. The results obtained are summarized as follows : 1. Concentration of exchangeable Mg and relative proportion of Mg to CEC in the soils before experiment were considerably below the critical level for good forage growth and prevention of grass tetany. It seems that these properties would be able to handicap by liming and NPK applications. 2. Comparing with the critical level for likelihood of tetany(Mg <0.2%, K >2.5%, and W(Ca+Mg) >2.2 in forages), mean concentration of Mg ranged from 0.14 in DS plot and 0.18 in FP plot to 0.24% in CF plot. Meanwhile, hazards of grass tetany in relation to the %K and ratio of K/(Ca+Mg) were not recognized. 3. Comparing with the optimum level of Carp(% ratio)=2.0 in forages for animal health, these ranged from 6.1 to 7.1. (Key words : Grass tetany, Fertilizer. Soil. Mineral nutrients)

  • PDF

Mineral-Based Slow Release Fertilizers: A Review

  • Noh, Young Dong;Komarneni, Sridhar;Park, Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • Global population is expected to reach nine billion in 2050 and the total demand for food is expected to increase approximately by 60 percent by 2050 as compared to 2005. Therefore, it is important to increase crop production in order to meet the global demand for food. Slow release fertilizers have been developed and designed in order to improve the efficiency of fertilizers. Mineral-based slow release fertilizers are useful because the minerals have a crystalline structure and are environmentally friendly in a soil. This review focuses on slow release fertilizers based on montmorillonite, zeolite, and layered double hydroxide phases as a host for nutrients, especially N. Urea was successfully stabilized in the interlayer space of montmorillonite by the formation of urea-Mg or Ca complex, $[(Urea)_6Mg\;or\;Ca]^{2+}$ protecting its rapid degradation in soils. Naturally occurring zeolites occluded with ammonium nitrate and potassium nitrate by molten salt treatment could be used as slow release fertilizer because the occlusion process increased the capacity of zeolites to store nutrients in addition to exchangeable cations. Additionally, surface-modified zeolites could also be used as slow release fertilizer because the modified surface showed high affinity for anionic nutrients such as nitrate and phosphate. Moreover, there were attempts to develop and use synthetic layered double hydroxide as a carrier of nitrate because it has positively charged layers which electrostatically bond nitrate anions. Kaolin was also tested by combining with a polymer or through the mechanical-chemical process for slow release of nutrients.

Comparisons of Inorganic Amounts in Paddy Field Soil, Rice Straw and Grain with Severity of Brown Spot Caused by Cochliobolus miyabeanus (벼 깨씨무늬병 발병정도에 따른 논토양, 벼알 및 볏짚에서의 무기성분 비교)

  • Yeh, Wan-Hae;Park, Yang-Ho;Kim, Lee-Yul;Taik, Jung-Soon;Nam, Young-Ju;Shim, Hong-Sik;Kim, Yong-Ki;Yeon, Byeong-Yeol
    • Research in Plant Disease
    • /
    • v.15 no.1
    • /
    • pp.41-45
    • /
    • 2009
  • In order to study a relationship between soil nutrients and rice brown spot occurrence, paddy field soils, rice grains and straws collected from different paddy fields with different disease degrees of brown spots were analyzed for inorganic nutrients. Brown spot was prevalent in the rice grown in nutrient-deficient soils, which is especially low in macronutrient elements (phosphoric acid, potassium, silicic acids) and micronurients (calcium, magnesium). The soil, however, was high in sodium while organic nutrients and pH level were similar to others. The rice straws with severe brown spot were low in inorganics such as ferrous, copper, T-N, and $P_{2}O_{5}$ while the rice grains with brown spot were low in ferrous, MgO, Zn, and Mn. In the analysis of field type and nitrogen level, the highest disease severity was found in sandy-type field soil, followed by salty-type field soil and disease severity decreased as application level of nitrogen fertilizer increased. As a summary, the most important factor for effective brown spot control in rice is maintenance of proper nutrients in sandy-type field and control of sodium level in salty-type field soil.

Electrokinetic Ions Injection into Kaolinite and Sand for Bioremediation (카올리나이트와 모레에서의 Bioremediation을 위한 Electrokinetic 이온 주입 특성)

  • 이호창;한상재;김수삼;오재일
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.405-410
    • /
    • 2001
  • Bioremediation is a degradation process of existing organic contaminants in soils and groundwater by indigenous or inoculated microorganisms. This process can provide economical solution as well as safe and effective alternative in remediation technologies. However, it has been suggested that the rate of bioremediation process of organic contaminants by microorganisms can be limited by the concentration of nutrients and TEAs(Terminal Electron Accepters). In in-situ bioremediation, conventional pumping techniques have been used for supplying these additives. However, the injection of these additives is difficult in low permeable soils, and also hindered by preferential flow paths resulting from heterogeneities in high permeable ground. Therefore, the Injection of chemical additives is the most significant concern in in-situ bioremediation. Most recently, electrokinetic technique has been applied into the bioremediation and the injection characteristics under electrokinetics have not been examined in various soil types. Therefore, in this study, electrokinetic injection method is investigated in kaolinite and sand, and the concentration of ammonium(nutrients) and sulfate(TEAs) in soil is presented.

  • PDF

Comparisons of inorganic amounts in paddy fields, rice straw and seed with varying severity of brown spot caused by Cochliobolus miyabeanus

  • Yeh, Wan-Hae;Park, Yang-Ho;Kim, I-Yeol;Kim, Yong-Ki;Shim, Hong-Sik
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.91.2-92
    • /
    • 2003
  • In order to elucidate influence of nutritional status on rice brown spot caused by Cochliobolus miyabeanus, rice cultivation soils and rice straws were collected from paddy fields where ice brown spot occurred severely, moderately, a little and none respectively. Rice plant materials were analyzed to measure inorganic nutrients in rice straws and rice seeds. Analysis of chemical properties of rice paddy soil showed that EC and contents of available phosphate, cation and silicic acid in soil with severe infections were lower than those in healthy soil. This result suggests that amount and holding capacity of nutrient contents in soils collected from paddy field with infection of C. miyabeanus are relatively low compared to those in soils collected from healthy paddy field. Analysis of inorganic nutrients in rice straws showed that amount of macronutrient elements such as silicic acids, available phosphate and total nitrogen, and micronutrients such as copper, iron and zinc in rice straws from paddy field with infection were lower than those in healthy soil. Especially amount of iron and silicic acid were very low in rice straws from paddy field soils with infection Amount of inorganic nutrients such as iron and zinc in rice seeds was the same trend as those of rice straws. These results showed that one of major factors affecting rice brown spot was amount of nutrient contents in soil and rice straw.

  • PDF

The Application of NIRS for Soil Analysis on Organic Matter Fractions, Ash and Mechanical Texture

  • Hsu, Hua;Tsai, Chii-Guary;Recinos-Diaz, Guillermo;Brown, John
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1263-1263
    • /
    • 2001
  • The amounts of organic matter present in soil and the rate of soil organic matter (SOM) turnover are influenced by agricultural management practice, such as rotation, tillage, forage plow down direct seeding and manure application. The amount of nutrients released from SOM is highly dependent upon the state of the organic matter. If it contains a large proportion of light fractions (low-density) more nutrients will be available to the glowing crops. However, if it contains mostly heavy fractions (high-density) that are difficult to breakdown, then lesser amounts of nutrients will be available. The state of the SOM and subsequent release of nutrients into the soil can be predicted by NIRS as long as a robust regression equation is developed. The NIRS method is known for its rapidity, convenience, simplicity, accuracy and ability to analyze many constituents at the same time. Our hypothesis is that the NIRS technique allows researchers to investigate fully and in more detail each field for the status of SOM, available moisture and other soil properties in Alberta soils for precision farming in the near future. One hundred thirty one (131) Alberta soils with various levels (low 2-6%, medium 6-10%, and high >10%) of organic matter content and most of dry land soils, including some irrigated soils from Southern Alberta, under various management practices were collected throughout Northern, Central and Southern Alberta. Two depths (0- 15 cm and 15-30 cm) of soils from Northern Alberta were also collected. These air-dried soil samples were ground through 2 mm sieve and scanned using Foss NIR System 6500 with transport module and natural product cell. With particle size above 150 microns only, the “Ludox” method (Meijboom, Hassink and van Noorwijk, Soil Biol. Biochem.27: 1109-1111, 1995) which uses stable silica, was used to fractionate SOM into light, medium and heavy fractions with densities of <1.13, 1.13-1.37 and >1.37 respectively, The SOM fraction with the particle size below 150 microns was discarded because practically, this fraction with very fine particles can't be further separated by wet sieving based on density. Total organic matter content, mechanical texture, ash after 375$^{\circ}C$, and dry matter (DM) were also determined by “standard” soil analysis methods. The NIRS regression equations were developed using Infra-Soft-International (ISI) software, version 3.11.

  • PDF