• Title/Summary/Keyword: Soil NO emission

Search Result 105, Processing Time 0.039 seconds

Atmospheric Acid Deposition : Nitrogen Saturation of Forests (대기 산성 강하물 : 삼림의 질소 포화)

  • Kim, Joon-Ho
    • Journal of Ecology and Environment
    • /
    • v.29 no.3
    • /
    • pp.305-321
    • /
    • 2006
  • Atmospheric Acid Deposition: Nitrogen Saturation of Forests: Volume weighted annual average wet deposition of nitroge at 33 sites in Korea during 1999-2004 ranged 7.28 to $21.05kgN{\cdot}ha^{-1}{\cdot}yr^{-1}$ with average $12.78kgN{\cdot}ha^{-1}{\cdot}yr^{-1}$, which values are similar level with nitrogen deposition of Europe and North America. The temperate forests that suffered long-term high atmospheric nitrogen deposition are gradually saturated with nitrogen. Such nitrogen saturated forest watersheds usually leach nitrate ion ($NO_3^-$) in stream water and soil solution. It may be likely that Korean forest ecosystems are saturated by much nitrogen deposition. In leaves with nitrogen saturation ratios of N/P, N/K and N/Mg are so enhanced that mineral nutrient system is disturbed, suffered easily frost damage and blight disease, reduced fine-root vitality and mycorrhizal activity. Consequently nitrogen saturated forests decrease primary productivity and finally become forest decline. Futhermore understory species are replaced the nitrophobous species by the nitrophilous one. In soil with nitrogen saturation uptake of methane ($CH_4$) is reduced and emission of nitrogen monoxide (NO) and nitrous oxide ($N_{2}O$) are increased, which gases are greenhouse gas accelerating global warming.

Depth profiles and the behavior of heavy metal atoms contained in the soil around a Il-Kwang disused mine in Kyung Nam (경남 일광 폐광 부근 토양에 함유된 중금속의 깊이별 분포와 거동)

  • Jeong, Jong Hak;Song, Hyun Jung;Jeong, Gi Ho
    • Analytical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.105-113
    • /
    • 1997
  • We investigated the content of heavy metals contained in the soil at an Il-Kwang disused mine in Kyung Nam. Three sampling points were selected, each point was digged to 210 or 240cm, sampled each 30cm depth. After air drying, each sample was digested in aqua regia and then analyzed with an Inductively Coupled Plasma Atomic Emission Spectrometer. We determined the content of Zn, Pb, Cr, Cd, Cu, Mn, and Fe, maximum content of Pb, Cd, and Zn was observed to $(4.6{\pm}0.1){\times}10^3$, 9.4(${\pm}3.6$), and $(2.7{\pm}0.1){\times}10^2{\mu}g/g$ respectively. Mean pH values of soil sampled at No.1, 2, and 3 regions were 3.2, 2.6, and 2.8, respectively. These values are remarkably lower than pH of the conventional standard soil which usually shows pH level around 4.9. At each sampling point, maximum content of heavy metals was observed from 30cm to 60cm depth. The depth profiles of Zn, Cd, Pb, and Cr showed very similar tendencies to each other, but those of Fe, Cu. and Mn showed different tendencies to former ones.

  • PDF

Application of LCA Methodology on Lettuce Cropping Systems in Protected Cultivation (시설재배 상추에 대한 전과정평가 (LCA) 방법론 적용)

  • Ryu, Jong-Hee;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.705-715
    • /
    • 2010
  • The adoption of carbon foot print system is being activated mostly in the developed countries as one of the long-term response towards tightened up regulations and standards on carbon emission in the agricultural sector. The Korean Ministry of Environment excluded the primary agricultural products from the carbon foot print system due to lack of LCI (life cycle inventory) database in agriculture. Therefore, the research on and establishment of LCI database in the agriculture for adoption of carbon foot print system is urgent. Development of LCA (life cycle assessment) methodology for application of LCA to agricultural environment in Korea is also very important. Application of LCA methodology to agricultural environment in Korea is an early stage. Therefore, this study was carried out to find out the effect of lettuce cultivation on agricultural environment by establishing LCA methodology. Data collection of agricultural input and output for establishing LCI was carried out by collecting statistical data and documents on income from agro and livestock products prepared by RDA. LCA methodology for agriculture was reviewed by investigating LCA methodology and LCA applications of foreign countries. Results based on 1 kg of lettuce production showed that inputs including N, P, organic fertilizers, compound fertilizers and crop protectants were the main sources of major emission factor during lettuce cropping process. The amount of inputs considering the amount of active ingredients was required to estimate the actual quantity of the inputs used. Major emissions due to agricultural activities were $N_2O$ (emission to air) and ${NO_3}^-$/${PO_4}^-$ (emission to water) from fertilizers, organic compounds from pesticides and air pollutants from fossil fuel combustion in using agricultural machines. The softwares for LCIA (life cycle impact assessment) and LCA used in Korea are 'PASS' and 'TOTAL' which have been developed by the Ministry of Knowledge Economy and the Ministry of Environment. However, the models used for the softwares are the ones developed in foreign countries. In the future, development of models and optimization of factors for characterization, normalization and weighting suitable to Korean agricultural environment need to be done for more precise LCA analysis in the agricultural area.

Eco-friendly Production of Maize Using Struvite Recovered from Swine Wastewater as a Sustainable Fertilizer Source

  • Liu, YingHao;Rahman, M.M.;Kwag, Jung-Hoon;Kim, Jae-Hwan;Ra, Chang-Six
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.12
    • /
    • pp.1699-1705
    • /
    • 2011
  • Magnesium ammonium phosphate (MAP) was recovered from swine wastewater and the feasibility of reutilizing it as a slowly-releasing fertilizer was evaluated. Maize growth was investigated with normal and high application rates of MAP and a fused super phosphate (FSP) fertilizer. A total of 5 treatments ($T_0$ = control, $T_1$ = MAP based on 30 kg P $ha^{-1}$, $T_2$ = FSP based on 30 kg P $ha^{-1}$+urea equivalent to nitrogen of MAP applied in $T_1$, $T_3$ = MAP based on 40 kg P $ha^{-1}$, $T_4$ = FSP based on 40 kg P $ha^{-1}$+urea equivalent to nitrogen of MAP applied in $T_3$) were arranged with 3 replications. In the case of height and circumference, significant differences were found between controls and treated maize plants (p<0.01). However, no statistical differences were found between MAP- and FSP-urea treated maize. Leaf area and green biomass yield were significantly (p<0.01) higher in the treated group than control. Leaf area was also found significantly higher (p<0.01) in the higher MAP- treated group (2,374 $cm^2$ $plant^{-1}$) than other treatments. $N_2O$ emission was found to be lower in MAP treated soil than that from FSP-urea treated soil, which might be due to the slow releasing pattern of MAP. It could be assumed from the results that MAP would be an eco-friendly sustainable fertilizer source for crop production.

Ecological Risk Assessment of Chemicals Migrated from a Recycled Plastic Product

  • Roh, Ji-Yeon;Kim, Min-Hyuck;Kim, Woo Il;Kang, Young-Yeul;Shin, Sun Kyoung;Kim, Jong-Guk;Kwon, Jung-Hwan
    • Environmental Analysis Health and Toxicology
    • /
    • v.28
    • /
    • pp.13.1-13.5
    • /
    • 2013
  • Objectives: Potential environmental risks caused by chemicals that could be released from a recycled plastic product were assessed using a screening risk assessment procedure for chemicals in recycled products. Methods: Plastic slope protection blocks manufactured from recycled plastics were chosen as model recycled products. Ecological risks caused by four model chemicals - di-(2-ethylhexyl) phthalate (DEHP), diisononyl phthalate (DINP), cadmium (Cd), and lead (Pb)-were assessed. Two exposure models were built for soil below the block and a hypothetic stream receiving runoff water. Based on the predicted no-effect concentrations for the selected chemicals and exposure scenarios, the allowable leaching rates from and the allowable contents in the recycled plastic blocks were also derived. Results: Environmental risks posed by slope protection blocks were much higher in the soil compartment than in the hypothetic stream. The allowable concentrations in leachate were $1.0{\times}10^{-4}$, $1.2{\times}10^{-5}$, $9.5{\times}10^{-3}$, and $5.3{\times}10^{-3}mg/L$ for DEHP, DINP, Cd, and Pb, respectively. The allowable contents in the recycled products were $5.2{\times}10^{-3}$, $6.0{\times}10^{-4}$, $5.0{\times}10^{-1}$, and $2.7{\times}10^{-1}mg/kg$ for DEHP, DINP, Cd, and Pb, respectively. Conclusions: A systematic ecological risk assessment approach for slope protection blocks would be useful for regulatory decisions for setting the allowable emission rates of chemical contaminants, although the method needs refinement.

Carbon stocks and its variations with topography in an intact lowland mixed dipterocarp forest in Brunei

  • Lee, Sohye;Lee, Dongho;Yoon, Tae Kyung;Salim, Kamariah Abu;Han, Saerom;Yun, Hyeon Min;Yoon, Mihae;Kim, Eunji;Lee, Woo-Kyun;Davies, Stuart James;Son, Yowhan
    • Journal of Ecology and Environment
    • /
    • v.38 no.1
    • /
    • pp.75-84
    • /
    • 2015
  • Tropical forests play a critical role in mitigating climate change, and therefore, an accurate and precise estimation of tropical forest carbon (C) is needed. However, there are many uncertainties associated with C stock estimation in a tropical forest, mainly due to its large variations in biomass. Hence, we quantified C stocks in an intact lowland mixed dipterocarp forest (MDF) in Brunei, and investigated variations in biomass and topography. Tree, deadwood, and soil C stocks were estimated by using the allometric equation method, the line intersect method, and the sampling method, respectively. Understory vegetation and litter were also sampled. We then analyzed spatial variations in tree and deadwood biomass in relation to topography. The total C stock was 321.4 Mg C $ha^{-1}$, and living biomass, dead organic matter, and soil C stocks accounted for 67%, 11%, and 23%, respectively, of the total. The results reveal that there was a relatively high C stock, even compared to other tropical forests, and that there was no significant relationship between biomass and topography. Our results provide useful reference data and a greater understanding of biomass variations in lowland MDFs, which could be used for greenhouse gas emission-reduction projects.

Evaluation of N2O Emissions with Different Growing Periods (Spring and Autumn Seasons), Tillage and No Tillage Conditions in a Chinese Cabbage Field (배추의 재배시기와 경운 유.무에 따른 아산화질소 배출 평가)

  • Kim, Gun-Yeob;Jeong, Hyun-Cheol;Shim, Kyo-Moon;Lee, Seul-Bi;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1239-1244
    • /
    • 2011
  • Importance of climate change and its impact on agriculture and environment has increased with a rise of greenhouse gases (GHGs) concentration in Earth's atmosphere. Nitrous oxide ($N_2O$) emission in upland fields were assessed in terms of emissions and their control at the experimental plots of National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA) located in Suwon city. It was evaluated $N_2O$ emissions with different growing periods (spring and autumn seasons), tillage and no tillage conditions in a chinese cabbage field. The results were as follows: 1) An amount of $N_2O$ emissions were high in the order of Swine manure compost>NPK>Hairy vetch+N fertilizer. By tillage and no tillage conditions, $N_2O$ emissions were reduced to 33.7~51.8% (spring season) and 31.4~76.7% (autumn season) in no-tillage than tillage conditions. 2) In autumn season than those spring season, $N_2O$ emissions at NPK, hairy vetch+N fertilizer and swine manure compost were reduced to 49.6%, 39.0% and 60.0%, respectively, in tillage treatment and 59.5%, 70.6% and 58.7%, respectively, in no-tillage treatment. 3) $N_2O$ emission measured in this study was 15.2~86.4% lower with tillage and no tillage treatments than that of the IPCC default value (0.0125 kg $N_2O$-N/kg N).

Life Cylcle Assessment (LCA) on Rice Production Systems: Comparison of Greenhouse Gases (GHGs) Emission on Conventional, Without Agricultural Chemical and Organic Farming (쌀 생산체계에 대한 영농방법별 전과정평가: 관행농, 무농약, 유기농법별 탄소배출량 비교)

  • Ryu, Jong-Hee;Kwon, Young-Rip;Kim, Gun-Yeob;Lee, Jong-Sik;Kim, Kye-Hoon;So, Kyu-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1157-1163
    • /
    • 2012
  • This study was performed a comparative life cycle assessment (LCA) among three rice production systems in order to analyze the difference of greenhouse gases (GHGs) emissions and environment impacts. Its life cycle inventory (LCI) database (DB) was established using data obtained from interview with conventional, without agricultural chemical and organic farming at Gunsan and Iksan, Jeonbuk province in 2011. According to the result of LCI analysis, $CO_2$ was mostly emitted from fertilizer production process and rice cropping phase. $CH_4$ and $N_2O$ were almost emitted from rice cultivation phase. The value of carbon footprint to produce 1 kg rice (unhulled) on conventional rice production system was 1.01E+00 kg $CO_2$-eq. $kg^{-1}$ and it was the highest value among three rice production systems. The value of carbon footprints on without agricultural chemical and organic rice production systems were 5.37E-01 $CO_2$-eq. $kg^{-1}$ and 6.58E-01 $CO_2$-eq. $kg^{-1}$, respectively. Without agricultural chemical rice production system whose input amount was the smallest had the lowest value of carbon footprint. Although the yield of rice from organic farming was the lowest, its value of carbon footprint less than that of conventional farming. Because there is no compound fertilizer inputs in organic farming. Compound fertilizer production and methane emission during rice cultivation were the main factor to GHGs emission in conventional and without agricultural chemical rice production systems. In organic rice production system, the main factors to GHGs emission were using fossil fuel on machine operation and methane emission from rice paddy field.

An Economic Feasibility Study of AR CDM project in North Korea (북한 지역을 대상으로 한 조림 CDM 사업의 경제적 타당성 연구)

  • Han, Ki Joo;Youn, Yeo-Chang
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.3
    • /
    • pp.235-244
    • /
    • 2007
  • Potentials of AR CDM project in North Korea are assessed and feasible land area for AR CDM project is estimated. According to our estimation, There could be 515,000 hectares of forest lands deforested before 1990 in North Korea and 8,854 hectares at the regional level of Gae-sung City, which are eligible for AR CDM project, based on researches of satellite image analyses conducted from 1980's to 1990's. A baseline scenario assumed 44.73 tones of carbon stored in soil per hectare with no vegetation above ground remained during the project period following the default value of IPCC's Good Practice Guidance for LULUCF considering soil structure, climate and land use of the project area. The scenario also assumes that black rocust (Robinia pseudoacacia) is planted and the CDM project is implemented for 20 years. The costs for producing greenhouse gases CER (certified emission reduction) credits include costs of tree planting and forest management, and costs of project negotiation and transactions for issuing the credits. It is estimated that 376 tones of carbon dioxide per hectare can be accumulated and 503 temporary CER credits per hectare and 265 long-term CER credits per hectare could be produced during the project period. It is estimated to cost US$ 4.04 and US$ 7.67 to provide one unit of temporary credit and long-term credit, respectively. These values can be regarded as the cost of conferring emission commitment of a country or a private entity. However, it is not clear which option is better economically because the replacement periods are different in these two cases.

The Present State of an Air Pollutants Inflow into Gyeongju and Effects on Stone Cultural Properties (경주권역으로의 대기오염물질 유입현황과 석조문화재에 미치는 영향)

  • Jung, Jong-Hyeon;Shon, Byung-Hyun;Kim, Hyun-Gyu;Choi, Won-Joon;Nam, Chul-Hyun
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.5 s.86
    • /
    • pp.349-359
    • /
    • 2005
  • In this study, we focused on the geographical and the meterological conditions, the atmospheric examination, the soil contents and compositions in order to establish cultural properties conservation plan in Gyeongju and its surroundings. Also, the transport route with environmental contaminants in Ulsan and Pohang was examined. The results could be summarized as follows ; Air pollutant and environmental contaminant was transported by two types of winds. One is induced by local winds, the other is induced by synoptic winds. Air contaminant transported from coastal regions to inland regions were associated with wind velocity. Gyeongju had good atmospheric conditions, i.e. $SO_2\;0.009{\sim}0.011ppm,\;CO\;0.6{\sim}0.8ppm,\;NO_2\;0.015{\sim}0.020ppm,\;O_3\;0.017{\sim}0.032ppm,\;PM_{10}\;46{\sim}62{\mu}g/m^3\;and\;Pb\;0.034{\sim}0.060{\mu}g/m^3$, which was below environmental air qualify standards and was little lower than those of Pohang and Ulsan. However, Ulsan and Pohang city are located on south-east coast and have many industrial facilities. Hence, air pollution problems become serious issues in Ulsan, Pohang, Busan, Daegu and other cities due to the emission of air pollutants from the various industrial facilities, incinerator and power plants, etc. The soil of Gyeongju had heavy metals conditions, i.e. $Cd\;0.01{\sim}0.08mg/kg,\;Cu\;N.D{\sim}2.39mg/kg,\;As\;N.D{\sim}0.07mg/kg,\;Hg\;N.D{\sim}0.15mg/kg,\;Pb\;0.49{\sim}1.39mg/kg,\;Cr^{+6}\;0.02{\sim}0.42mg/kg,\;Fe\;0.74{\sim}1.55mg/kg,\;Mn\;0.11{\sim}0.49mg/kg\;and\;Zn\;1.11{\sim}3.56mg/kg$. However, pH value of soil had range of $4.12{\sim}7.45$. The results showed that high pH concentration of soil could occur due to air pollution diffusion and environmental contaminant transport at Ulsan and Pohang city.