• Title/Summary/Keyword: Soil Moisture Retrieval

Search Result 20, Processing Time 0.021 seconds

Experimental Retrieval of Soil Moisture for Cropland in South Korea Using Sentinel-1 SAR Data (Sentinel-1 SAR 데이터를 이용한 우리나라 농지의 토양수분 산출 실험)

  • Lee, Soo-Jin;Hong, Sungwook;Cho, Jaeil;Lee, Yang-Won
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_1
    • /
    • pp.947-960
    • /
    • 2017
  • Soil moisture plays an important role to affect the Earth's radiative energy balance and water cycle. In general, satellite observations are useful for estimating the soil moisture content. Passive microwave satellites have an advantage of direct sensitivity on surface soil moisture. However, their coarse spatial resolutions (10-36 km) are not suitable for regional-scale hydrological applications. Meanwhile, in-situ ground observations of point-based soil moisture content have the disadvantage of spatially discontinuous information. This paper presents an experimental soil moisture retrieval using Sentinel-1 SAR (Synthetic Aperture Radar) with 10m spatial resolution for cropland in South Korea. We developed a soil moisture retrieval algorithm based on the technique of linear regression and SVR (support vector regression) using the ground observations at five in-situ sites and Sentinel-1 SAR data from April to October in 2015-2017 period. Our results showed the polarization dependency on the different soil sensitivities at backscattered signals, but no polarization dependence on the accuracies. No particular seasonal characteristics of the soil moisture retrieval imply that soil moisture is generally more affected by hydro-meteorology and land surface characteristics than by phenological factors. At the narrower range of incidence angles, the relationship between the backscattered signal and soil moisture content was more distinct because the decreasing surface interference increased the retrieval accuracies under the condition of evenly distributed soil moisture (during the raining period or on the paddy field). We had an overall error estimate of RMSE (root mean square error) of approximately 6.5%. Our soil moisture retrieval algorithm will be improved if the effects of surface roughness, geomorphology, and soil properties would be considered in the future works.

ESTIMATION OF SOIL MOISTURE WITH AIRBORNE L-BAND MICROWAVE RADIOMETER

  • Chang, Tzu-Yin;Liou, Yuei-An
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.26-28
    • /
    • 2008
  • Soil moisture plays an important role in the land-atmosphere energy balance because it governs the partitioning of energy through latent heat fluxes or evapotranspiration. From the numerous studies, it is evident that the L-band radiometer is a useful and effective tool to measure soil moisture. The objective of the study is to develop and to verify the soil moisture retrieval algorithms for the L-band radiometer system. Through the radiometer-observed brightness temperature, surface emissivity and reflectivity can be derived, and, hence, soil moisture. We collect field and L-band airborne radiometer data from washita92, SGP97 and SGP99 experiments to assist the development of the retrieval algorithms. Upon launching the satellite L-band radiometer such as ESA-sponsored SMOS (Soil Moisture and Ocean Salinity) mission, the developed algorithms may be used to study and monitor globe soil moisture change.

  • PDF

RETRIEVAL OF SOIL MOISTURE AND SURFACE ROUGHNESS FROM POLARIMETRIC SAR IMAGES OF VEGETATED SURFACES

  • Oh, Yi-Sok;Yoon, Ji-Hyung
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.33-36
    • /
    • 2008
  • This paper presents soil moisture retrieval from measured polarimetric backscattering coefficients of a vegetated surface. Based on the analysis of the quite complicate first-order radiative transfer scattering model for vegetated surfaces, a simplified scattering model is proposed for an inversion algorithm. Extraction of the surface-scatter component from the total scattering of a vegetation canopy is addressed using the simplified model, and also using the three-component decomposition technique. The backscattering coefficients are measured with a polarimetric L-band scatterometer during two months. At the same time, the biomasses, leaf moisture contents, and soil moisture contents are also measured. Then the measurement data are used to estimate the model parameters for vv-, hh-, and vh-polarizations. The scattering model for tall-grass-covered surfaces is inverted to retrieve the soil moisture content from the measurements using a genetic algorithm. The retrieved soil moisture contents agree quite well with the in-situ measured soil moisture data.

  • PDF

Effect of Vegetation Layers on Soil Moisture Measurement Using Radars (레이다를 이용한 토양 수분함유량 측정에서 초목 층의 영향 분석)

  • Park, Sinmyong;Oh, Yisok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.7
    • /
    • pp.660-663
    • /
    • 2016
  • This paper presents the effect of vegetation layer and radar parameters on soil moisture measurement using the vegetation layer scattering model and surface scattering model. The database of backscattering coefficients for various vegetation layer densities, incidence angles, frequencies, and polarizations is generated using $1^{st}$-order RTM(Radiative Transfer Model). Then, surface soil moisture contents were estimated from the backscattering coefficients in the database using the WCM(Water Cloud Model) and Oh model. The retrieved soil moisture contents were compared with the soil moisture contents in the input parameters of the RTM to estimate the retrieval errors. The effects of vegetation layer and radar parameters on soil moisture measurement are analyzed using the retrieval errors.

Use of uniform distribution for generating synthetic brightness temperature in passive microwave soil moisture retrieval

  • Lee Khil-Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.19-28
    • /
    • 2005
  • Passive microwave remote sensing technique have shown great potential for mon monitoring regional/global surface soil moisture. Given a single measurement at dual polarization/single frequency/single view angle, a strategic approach to artificially generating multiple microwave brightness temperatures is presented. And then the statistically generated microwave brightness temperature data are applied to the inverse algorithm, which mainly relies on a physically based microwave emission model and an advanced single-criterion multi-parameter optimization technique, to simultaneously retrieve soil moisture and vegetation characteristics. . The procedure is tested with dual polarized Tropical Rainfall Measurement Mission Microwave Imager (TRMM/TMI) over two different cover sites in Oklahoma and Beltsville field experimental data. The retrieval results are analyzed and show excellent performance.

  • PDF

Evaluation of satellite-based soil moisture retrieval over the korean peninsula : using AMSR2 LPRM algorithm and ground measurement data (위성기반 토양수분 자료의 한반도 지역 적용성 평가: AMSR2 LPRM 알고리즘과 지점관측 자료를 이용하여)

  • Kim, Seongkyun;Kim, Hyunglok;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.5
    • /
    • pp.423-429
    • /
    • 2016
  • This study aims at assessing the quality of the Advanced Microwave Scanning Radiometer 2 (AMSR2) soil moisture products onboard GCOM-W1 satellite based on Land Parameter Retrieval Model (LPRM) soil moisture retrieval algorithm with field measurements in South Korea from March to September, 2014. Results of mean bias and root mean square error between AMSR2 LPRM soil moisture products (X-band) and ground measurements showed reasonable value of 0.03 and 0.16. Also, the maximum of the Pearson correlation coefficients was 0.67, which showed good agreement in terms of temporal variability with ground measurements. By comparing AMSR2 soil moisture with in-situ measurement according to the overpass time and band frequency, X-band products on the ascending time outperformed than those of C1-band and C2-band. Furthermore, this study offers an insight into the applicability of the AMSR2 soil moisture products for monitoring various natural disasters at a large scale such as drought and flood.

Assessment of Stand-alone Utilization of Sentinel-1 SAR for High Resolution Soil Moisture Retrieval Using Machine Learning (기계학습 기반 고해상도 토양수분 복원을 위한 Sentinel-1 SAR의 자립형 활용성 평가)

  • Jeong, Jaehwan;Cho, Seongkeun;Jeon, Hyunho;Lee, Seulchan;Choi, Minha
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.571-585
    • /
    • 2022
  • As the threat of natural disasters such as droughts, floods, forest fires, and landslides increases due to climate change, social demand for high-resolution soil moisture retrieval, such as Synthetic Aperture Radar (SAR), is also increasing. However, the domestic environment has a high proportion of mountainous topography, making it challenging to retrieve soil moisture from SAR data. This study evaluated the usability of Sentinel-1 SAR, which is applied with the Artificial Neural Network (ANN) technique, to retrieve soil moisture. It was confirmed that the backscattering coefficient obtained from Sentinel-1 significantly correlated with soil moisture behavior, and the possibility of stand-alone use to correct vegetation effects without using auxiliary data observed from other satellites or observatories. However, there was a large difference in the characteristics of each site and topographic group. In particular, when the model learned on the mountain and at flat land cross-applied, the soil moisture could not be properly simulated. In addition, when the number of learning points was increased to solve this problem, the soil moisture retrieval model was smoothed. As a result, the overall correlation coefficient of all sites improved, but errors at individual sites gradually increased. Therefore, systematic research must be conducted in order to widely apply high-resolution SAR soil moisture data. It is expected that it can be effectively used in various fields if the scope of learning sites and application targets are specifically limited.

USING TRMM SATELLITE C BAND DATA TO RETRIEVE SOIL MOISTURE ON THE TffiETAN PLATEAU

  • Chang Tzu-Yin;Liou Yuei-An
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.737-740
    • /
    • 2005
  • Soil moisture, through its dominance in the exchange of energy and moisture between the land and atmosphere, plays a crucial role in influencing atmospheric circulation. To identify the crucial role, it is a common agreement that knowledge of land surface processes and development of remote sensing techniques are of great important scientific issues. This research uses TRMM satellite C band (10.65 GHz) data to retrieve soil moisture on the Tibetan Plateau in Mainland China. Two retrieval schemes that are implemented include the t-(J) model and the R model. The latter one is developed based on a land surface process and radiobrightness (R) model for bare soil and vegetated terrain. Compared with the in situ ground measurements, the soil moisture retrieved from the R model and the t-(J) model with vegetation information obviously appear more accurate than that derived from bare soil model. Retrieved soil moisture contents from the two inversion models, R model and t-(J) model, have a similar trend, but the former appears to be superior in terms of correlation coefficient and bias compared with in situ data. In the future, we will apply the R model with the TRMM 10.65 GHz brightness temperature to monitor long-term soil moisture variation over Tibet Plateau.

  • PDF

Spatio-temporal Variability of Soil Moisture within Remote Sensing Footprints in Semi-arid Area (건조지역 원격탐사 footprint 내 토양수분의 시공간적 변동성 분석)

  • Hwang, Kyotaek;Cho, Hun Sik;Lee, Seung Oh;Choi, Minha
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3B
    • /
    • pp.285-293
    • /
    • 2010
  • Soil moisture is a key factor to control the exchange of water and energy between the surface and the atmosphere. In recent, many researches for spatial and temporal variability analyses of soil moisture have been conducted. In this study, we analyzed the spatio-temporal variability of soil moisture in Walnut Gulch Experimental Watershed, Arizona, U.S. during the Soil Moisture Experiment 2004 (SMEX04). The spatio-temporal variability analyses were performed to understand sensitivity of five observation sites with precipitation and relationship between mean soil moisture, and its standard deviation and coefficient of variation at the sites, respectively. It was identified that log-normal distribution was superior to replicate soil moisture spatial patterns. In addition, precipitation was identified as a key physical factor to understand spatio-temporal variability of soil moisure based on the temporal stability analysis. Based on current results, higher spatial variability was also observed which was agreed with the results of previous studies. The results from this study should be essential for improvement of the remotely sensed soil moisture retrieval algorithm.

Spatial Estimation of soil roughness and moisture from Sentinel-1 backscatter over Yanco sites: Artificial Neural Network, and Fractal

  • Lee, Ju Hyoung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.125-125
    • /
    • 2020
  • European Space Agency's Sentinel-1 has an improved spatial and temporal resolution, as compared to previous satellite data such as Envisat Advanced SAR (ASAR) or Advanced Scatterometer (ASCAT). Thus, the assumption used for low-resolution retrieval algorithms used by ENVISAT ASAR or ASCAT is not applicable to Sentinel-1, because a higher degree of land surface heterogeneity should be considered for retrieval. The assumption of homogeneity over land surface is not valid any more. In this study, considering that soil roughness is one of the key parameters sensitive to soil moisture retrievals, various approaches are discussed. First, soil roughness is spatially inverted from Sentinel-1 backscattering over Yanco sites in Australia. Based upon this, Artificial Neural Networks data (feedforward multiplayer perception, MLP, Levenberg-Marquadt algorithm) are compared with Fractal approach (brownian fractal, Hurst exponent of 0.5). When using ANNs, training data are achieved from theoretical forward scattering models, Integral Equation Model (IEM). and Sentinel-1 measurements. The network is trained by 20 neurons and one hidden layer, and one input layer. On the other hand, fractal surface roughness is generated by fitting 1D power spectrum model with roughness spectra. Fractal roughness profile is produced by a stochastic process describing probability between two points, and Hurst exponent, as well as rms heights (a standard deviation of surface height). Main interest of this study is to estimate a spatial variability of roughness without the need of local measurements. This non-local approach is significant, because we operationally have to be independent from local stations, due to its few spatial coverage at the global level. More fundamentally, SAR roughness is much different from local measurements, Remote sensing data are influenced by incidence angle, large scale topography, or a mixing regime of sensors, although probe deployed in the field indicate point data. Finally, demerit and merit of these approaches will be discussed.

  • PDF