• Title/Summary/Keyword: Soil Loss

Search Result 1,055, Processing Time 0.036 seconds

Weed and Pest Control by Means of Physical Treatments(I) -Effects of infrared irradiation on sandy loam for weed control- (물리적인 방법을 이용한 잡초 및 병해충방제 방법의 개발(I) -적외선 조사에 의한 잡초방제를 위한 사양토의 가열 효과-)

  • 강화석;유창연;신현동;강위수;오재헌
    • Journal of Biosystems Engineering
    • /
    • v.21 no.1
    • /
    • pp.21-33
    • /
    • 1996
  • This study was to obtain basic information needed to develop the effective weed control method for the production of less polluted agricultural products by inducing viability loss of weed seeds in soil with infrared irradiation. Ceramic plates were heated by LPG with the aid of forced air and the infrared produced from plates was used as the heat source for heating soil. The soil heated in this study was sandy loam with four levels of moisture contents (0.5, 5.1, 9.1, 15.0% wb). The temperature distribution was measured at various soil depths when soil was irradiated with infrared for different irradiation time (30, 60, 90 sec). The soil depths with duration time of minimum 3 minutes over $80^circ C$, temperature inducing viability loss of weed seeds, were investigated. When the moisture content of soil was 0.5% and 5.1% wb, the soil depths which can induce viability loss of weed seeds was greatly increased with increasing irradiation time. When 30 seconds of irradiation time was applied on soil with moisture content of 9.1% or 15.0% wb, any depths of soil tested in this study was not reached to the temperature of 8$0^{\circ}C$. Generally, the soil depth being needed for viability loss of weed seeds was decreased with increasing moisture content of soil.

  • PDF

GIS Technology for Soil Loss Analysis (금강유역 토양 유실 분석을 위한 GIS응용연구)

  • 김윤종;김원영;유일현;이석민;민경덕
    • Spatial Information Research
    • /
    • v.2 no.2
    • /
    • pp.165-174
    • /
    • 1994
  • Soil loss was estimated by using universal soil loss equation(USLE) through GIS technique in Buyeu area. The expected soil loss is determined from six environmental factors: rainfall, erodibility of selected soil, length and steepness (gradient) of ground slope, crop grown in soil, and land practices used. A scoring system for assessing soil lossrisk has been developed for calculating SLI(Soil Loss Index) by GIS. The scores of six factors multiplied to give a total score which was compared with an chosen classification system to categorize areas of low, moderate and high risk. Finally, a soil loss assessment map was produced by GIS cartographic simulation technique, and this map could be applied in the establishment of regional land use planning.

  • PDF

Soil Erosion Modeling Using RUSLE and GIS on the Imha Watershed (RUSLE 모형을 이용한 임하댐 유역에서의 토양유실량 평가)

  • Kim, Hyeon-Sik;Julien, Pierre. Y.;Yum, Kyung-Taek
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.126-131
    • /
    • 2007
  • The Imha watershed is vulnerable to severe erosion due to the topographical characteristics such as mountainous steep slopes. The RUSLE model was combined with GIS techniques to analyze the mean annual erosion losses and the soil losses caused by typhoon "Maemi". The model is used to evaluate the spatial distribution of soil loss rates under different land uses. The mean annual soil loss rate and soil losses caused by typhoon "Maemi"were predicted as $3,450\;tons/km^2/year$ and $2,920\;ton/km^2/"Maemi"$, respectively. The sediment delivery ratio was determined to be about 25% from the mean annual soil loss rate and the surveyed sediment deposits in the Imha reservoir in 1997.

  • PDF

SOIL EROSION MODELING USING RUSLE AND GIS ON THE IMHA WATERSHED

  • Kim, Hyeon-Sik;Julien Pierre Y.
    • Water Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.29-41
    • /
    • 2006
  • The Imha watershed is vulnerable to severe erosion due to the topographical characteristics such as mountainous steep slopes. Sediment inflow from upland area has also deteriorated the water quality and caused negative effects on the aquatic ecosystem of the Imha reservoir. The Imha reservoir was affected by sediment-laden density currents during the typhoon 'Maemi' in 2003. The RUSLE model was combined with GIS techniques to analyze the mean annual erosion losses and the soil losses caused by typhoon 'Maemi'. The model is used to evaluate the spatial distribution of soil loss rates under different land uses. The mean annual soil loss rate and soil losses caused by typhoon 'Maemi' were predicted as 3,450 tons/km2/year and 2,920 ton/km2/'Maemi', respectively. The sediment delivery ratio was determined to be about 25% from the mean annual soil loss rate and the surveyed sediment deposits in the Imha reservoir in 1997. The trap efficiency of the Imha reservoir was calculated using the methods of Julien, Brown, Brune, and Churchill and ranges from 96% to 99%.

  • PDF

Analysis of Effect of Ditch Restoration on Soil Loss Reduction in Highland Agricultural Fields (고랭지밭의 구거복원에 따른 토양유실저감 효과분석)

  • Sung, Yunsoo;Kim, Dong Jin;Lee, Suin;Ryu, Jichul;Kim, Jonggun;Lim, Kyoung Jae;Kim, Ki Sung
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.5
    • /
    • pp.385-391
    • /
    • 2020
  • Soil loss is a serious problem frequently caused by local torrential rainfalls due to climate change. In particular, soil loss is occurring in agricultural areas rather than urban areas, and many pollutants are introduced into rivers, causing environmental problems. To reduce soil loss, the Ministry of Environment has designated and managed non-point source management areas. The Jaun-district in Hongcheon-gun, which was designed as a non-point pollution source management area in Gangwon-do, is located in the upper stream of Soyang Lake. Most of the agricultural fields are composed of highland agriculture fields. The highland agricultural fields in the Jaun-district are also composed of large-scale farming areas, and the ditches located near the agricultural fields have been illegally used for farmland. Therefore, the local government in Hongcheon-gun is conducting a project to restore the ditches occupied by agricultural fields. However, an analysis of the amount of soil loss that can be reduced by the restoration of the ditches has not been conducted yet. Thus, the purpose of this study was to analyze the effect of reducing the soil loss from the restoration of the ditches used as agricultural fields in the Jaun-district. The SATEEC L Module was used to analyze the reduction in soil loss by ditch restoration. The SATEEC L Module was constructed to estimate the LS factor using Moore and Burch's method after calculating the slope length using the digital elevation model and the maximum allowable slope length. The LS factor and the USLE formula were used to estimate the amount of soil loss that could be reduced by ditch restoration. The analysis showed that the ditch restoration could reduce about 16.6% of the soil loss in the Jaun-district. The results of this study will contribute to the study of methods to reduce soil loss in non-point pollution management areas.

Application of RUSLE and MUSLE for Prediction of Soil Loss in Small Mountainous Basin (산지소유역의 토사유실량 예측을 위한 RUSLE와 MUSLE 모형의 적용성 평가)

  • Jung, Yu-Gyeong;Lee, Sang-Won;Lee, Ki-Hwan;Park, Ki-Young;Lee, Heon-Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.1
    • /
    • pp.98-104
    • /
    • 2014
  • This study aims to predict the amount of soil loss from Mt. Palgong's small basin, by using influence factors derived from related models, including RUSLE and MUSLE models, and verify the validity of the model through a comparative analysis of the predicted values and measured values, and the results are as follows: The amount of soil loss were greatly affected by LS factor. In comparison with the measured value of the amount of total soil loss, the predicted values by the two models (RUSLE and MUSLE), appeared to be higher than those of the measured soil loss. Predicted values by RUSLE were closer to values of measured soil loss than those of MUSLE. However, coefficient of variation of MUSLE were lower, but two model's coefficient of variation in similar partial patterns in the prediction of soil loss. RUSLE and MUSLE, prediction soil loss models, proved to be appropriate for use in small mountainous basin. To improve accuracy of prediction of soil loss models, more effort should be directed to collect more data on rainfall-runoff interaction and continuous studies to find more detailed influence factors to be used in soil loss model such as RUSLE and MUSLE.

Relationships between Cellulose Decomposition and Soil Environmental Factors in Three Coniferous Plantations (3수종의 침엽수조림지내 셀룰로오스 분해와 토양 환경요인과의 관계)

  • Kim, Choon-Sig
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.1
    • /
    • pp.39-44
    • /
    • 2012
  • This study was carried out to determine the relationships between cellulose decomposition and soil environmental factors in larch (Larix leptolepis) and pine (red pine: Pinus densiflora; rigitaeda pine: P. rigida ${\times}$ P. taeda) species planted in the same year (1963). The variation of cellulose mass loss with soil temperature, soil pH, soil $CO_2$ efflux rates, and soil water content was measured monthly for 4 months (July, August, September and October 2006) from three coniferous plantations. Mean mass loss rates during the study period were generally more rapid in rigitaeda pine (6.5 $mg\;g^{-1}\;day^{-1}$) than in red pine (6.2 $mg\;g^{-1}\;day^{-1}$) or larch (6.1 $mg\;g^{-1}\;day^{-1}$) plantations, although the mass loss rates were not significantly different among three tree species (P > 0.05). Cellulose mass loss rates among three tree species were positively correlated with soil temperature (red pine: r = 0.77, P < 0.05; rigitaeda pine: r = 0.59, P < 0.05; larch: r = 0.48, P < 0.05) at the 20 cm soil depth, while the mass loss rates were negatively correlated with soil pH (red pine: r = -0.63, P < 0.05; rigitaeda pine: r = -0.47, P < 0.05; larch: r = -0.43, P < 0.05). There was a significant correlation between cellulose mass loss and soil $CO_2$ efflux rates except for regitaeda pine plantation, while no significant correlation (P > 0.05) between cellulose mass loss and soil water content in larch or rigitaeda pine. The results suggest that cellulose mass loss rates in soil layers depend on the different soil environmental factors caused by tree species.

An Experimental Study on Soil Loss Rate of Recovery Soil Technique at High Water Revetment (고수호안 복토공법의 토양 유실율에 관한 실험적 연구)

  • Chae, Dong-Seok;Kim, Young-Do;Park, Jae-Hyeon;Kim, Chul
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.2
    • /
    • pp.135-141
    • /
    • 2010
  • Recently, to ensure the stability of flood control, instead of removal of concrete revetment, the vegetation mat method has been widely used on the recovery soil. However, the recovery soil method often failed to be stable against the flood, which caused the economic loss. In this study, the rate of soil loss and the velocity distribution on high water revetment are evaluated by the hydraulic experiments. The maximum difference of the soil loss rate was 52% depending on the vegetation. The reduction of the soli loss rate according to the vegetation is large when the revetment slope is steep. The maximum soil loss rate is 19.5% when there is no vegetation.

Comparison Sediment load with Soil Loss Using Revised Universal Soil Loss Equation and Geo-Spatial Information System (지형공간정보체계와 토양유실모형을 이용한 토양유실량과 유사량에 대한 비교)

  • 박재훈;양인태;김동문;천기선
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.3
    • /
    • pp.225-231
    • /
    • 2000
  • Soil loss by the rains has effect on natural environment. But It is difficult to find out the data that is surveyed in watershed. In this study, we combine RUSLE and GSIS, develop a program to automatically extract geo-factors to predict soil loss, and perform recurrent analysis against actual sediment load to bring out the relativity between soil loss and sediment load. Each factors need to RUSLE conducted by grid analysis. As the process to extract terrain factor became programming, the efficiency is rised.

  • PDF

Mathematical Description of Soil Loss by Runoff at Inclined Upland of Maize Cultivation (옥수수 재배 경사지 밭에서 물 유출에 따른 토양유실 예측 공식)

  • Hur, Seung-Oh;Jung, Kang-Ho;Ha, Sang-Keon;Kwak, Han-Kang;Kim, Jeong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.2
    • /
    • pp.66-71
    • /
    • 2005
  • Soil loss into stream and river by runoff shall be considered for non-point source pollution management as national land conservation. The purpose of this study was to develop the mathematical equation to predict soil loss from inclined uplands of maize cultivation due to the runoff by rainfall which mainly converges on July and August. Soil loss was concentrated on May because of low canopy over an entire field in 2002 and on June and July because of heavy rainfall in 2003. By regression analysis the relation between runoff and soil loss can be represented by a linear equation of y =1.5291x - 3.4933, where y is runoff ($Mg\;ha^{-1}$) and x is soil loss ($kg\;ha^{-1}$). The determination coefficient of this equation was 0.839 (P<0.001). Therefore, the mathematical equation derived from the practical experiment at the inclined upland can be applicable to predict soil loss accompanied by runoff due to periodic rainfall converging on short periods within a couple of months.