• Title/Summary/Keyword: Soil Improved binder

Search Result 8, Processing Time 0.024 seconds

Effects of Alkali-Activated Soil Stabilizer Binder Based on Recycling BP By-Products on Soil Improvement (BP부산물을 재활용한 알칼리활성화 지반개량재의 지반개량효과에 관한 연구)

  • Lee, Yeong-Won;Kang, Suk-Pyo;Kim, Jae-Hwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.2
    • /
    • pp.158-165
    • /
    • 2014
  • The enormous quantity of 'Bayer-Process by-products' (BP by-products) discharged by industries producing alumina from bauxite represents an environmental and economical problem. As it is mainly composed of $Fe_2O_3$, $Al_2O_3$, $SiO_2$, CaO and $Na_2O$, it is thought that using BP by-products as a construction material is an effective way to consume such a large quantity of alkaline waste. In this study, This study evaluates the effect of alkali-activated binder based on recycling BP by-products on soil improvement through the evaluation of slope stability and seepage flow numerical analysis. The results of analysis of ground slope safety at dry season and wet season meet standard (Ministry of Land, Infrastructure and Transport, 2006) Especially, when wet season, the ground used soil improving material meet standard, while the ground used soil-nailing method doesn't. Also, permeability coefficient of improved soil is smaller than that of natural soil and saturation depth of reinforced ground surface with improve soil is lower than that of natural soil.

Strength and Compaction Characteristics of Binder-Stabilized Subgrade Material in Ulsan Area - Main Binder Components : CaO and SO3 - (고화제로 안정처리 된 울산지역 노상재료의 강도 및 다짐특성 - 주 성분이 CaO와 SO3인 고화제 -)

  • Han, Sang-Hyun;Yea, Geu-Guwen;Kim, Hong-Yeon
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.105-113
    • /
    • 2018
  • In this study, the engineering properties including bearing capacity of subgrades stabilized with a binder are analyzed by laboratory and field experiments. The main components of the binder are CaO and $SO_3$. After the binder was mixed with a low plasticity clay, the passing rates were relatively decreased as the sieve mesh size increased. Not only did the soil type change to silty sand, but engineering properties, such as the plasticity index and modified California bearing ratio (CBR), were improved for the subgrade. A comparison of the compaction curves of the stabilized subgrade and field soil compacted with the same energy demonstrated an increase of approximately 6% in the maximum dry unit weight, slight decrease in optimum moisture content, and considerable increase improvement in grain size. In the modified CBR test, the effect of unit weight and strength increase of the modified soil (with a specific amount of binder) was remarkably improved. As the proportion of granulated material increased after the addition of binder, the swelling was reduced by 3.3 times or more during initial compaction and 6.5 times by final compaction. The unconfined compressive strength of the specimens was maintained at the homogeneous value with a constant design strength. The stabilized subgrade was validated by applying it in the field under the same conditions; this test demonstrated that the bearing capacity coefficients at all six sites after one day of compaction exceeded the target value and exhibited good variability.

Granulation Characteristics of Mono-granular NPK(10-0-30) Fertilizer Incorporated with Rock-Phosphate Powder and its Effects on Tobacco Plant (인광석분말을 증량제로 사용한 연초(煙草)재배용 복합비료(10-0-30)의 조립(造粒)특성 및 비효)

  • Lee, Yun-Hwan;Jeong, Hun-Chae;Kim, Yong-Yeon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.5
    • /
    • pp.290-295
    • /
    • 2002
  • Fertilizer granulation test was carried out by a small pan granulator. A premixture composed of SOP 60%, urea 22% and RP powder 18% was rolled in the pan granulator while 10% phosphoric acid solution(binder) was sprayed on the rolling powder bed. Granules were developed very fast along with a little amount of binder. Hardness, brittle ratio in water and hygroscopicity of granules were improved enough to evaluate physical properties of the fertilizer. Growth responses of tobacco plant to the fertilizer were investigated at seedling and flowering stage by pot experiment under plastic film roof. Seedlings showed poor growth at nursery pot cell. In virgin soil with deficient available phosphate tobacco plant showed poor growth until budding and flowering stage but good growth in tillage soil with high cumulative phosphate.

A Study on the Field Application of Ground Stabilizer using Circulating Resource for Improvement of Soft Ground in Saemangeum Area (새만금 지역의 연약지반 개량을 위한 순환자원 활용 지반안정재의 현장적용에 관한 연구)

  • Seo, Se-Gwan;Kim, You-Seong;Cho, Dae-sung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.1
    • /
    • pp.103-110
    • /
    • 2020
  • The DMM (Deep mixing method) is a construction method in which an improved pile is installed in the soft ground by excavation ground using an auger and then mixing ground stabilizer with soil. Improved pile installed in the soft ground by the DMM may have different compressive strength depending on the properties and characteristics of the soil. In the previous study, laboratory tests were performed on the ground stabilizer for the DMM developed by using the ash of the circulating fluidized bed boiler as a stimulator for alkali activation of the blast furnace slag. And the test results were analyzed to derive the correlation between the unit weight of binder (γB) and the uniaxial compressive strength (qu). In this study, comparative reviews were conducted on the correlations derived from the same laboratory tests on soil material collected from the Saemangeum area and the stability of the site was evaluated by analyzing the test results performed at the site. As a result, the clay collected from the Saemangeum area satisfies the correlation between the unit weight of binder (γB) and the uniaxial compressive strength (qu) derived from the previous study. And the result of the test at the field showed a higher uniaxial compressive strength than the standard strength at the field, indicating excellent stability.

An Experimental Study on the Shear Wave Velocity Improvement of Ground by Ground Improvement (지반개량을 통한 원지반의 전단파속도 향상에 대한 실험적 연구)

  • Jeong, Chan-Yu;Mun, Jae-Sung;Jo, Myoung-Su;Kang, Ho-deok;Yang, Hee-Jeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.33-39
    • /
    • 2019
  • In this study, an experimental study was carried out with variables of the shape of the ground soil-binder in order to find out whether the shear wave velocity and the ground grade were improved by the ground improvement. In this study, the shear wave velocity was measured using the crosshole method with variables of the shape of the ground soil-binder. In addition, the prediction formula of the shear wave velocity for suitability of N-Values for the domestic soil conditions are proposed using the result value of this study and the existing results of shear wave velocity. As a result, the shear wave velocity of the ground has increased. In addition, the prediction formula proposed in this study reasonably issued the existing experimental results regardless of the stratum conditions.

Hardness and Rebound Properties of Sprayed Green Soil Produced with Functional Additives for the Application to Steep Slopes (기능성 첨가재를 적용한 급경사면용 녹생토의 경도 및 리바운드 특성)

  • Lee, Byung-Jae;Kim, Hyo-Jung;Kim, Yun-Yung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.258-264
    • /
    • 2018
  • In this study, the improved performance of sprayed green soil was evaluated by incorporating functional additives. The optimal mixing ratio of the thickener and super-absorbent polymer, as an additive for moisture supply to the growth of plants within the range of mixing ratios that gives sufficient strength of green soil, was 5% and 1%, respectively. Using Portland cement as a main binder, the pH of the green soil was 9.1. To solve this alkali problem, the mixing proportion was improved so that the pH of the green soil was approximately 7.2 by mixing more than 10% of the chelate resin. The soil conductivity was measured to be 280 ~ 350mS/m under all the mixing conditions. This satisfied the criterion of less than 1000mS/m on the slope surface. As a result of measuring the soil hardness of the green soil prepared under the optimal mixing conditions of functional additives, it satisfied the criteria of 18 ~ 23mm when sprayed under a 1 bar pressure. The rebound rate was less than 15% when spraying green soil on a 75 % slope, and the hardness of the sprayed green soil was more than 18 mm.

A study on the Effect of Agricultural Industry Supporter for Durability using Waste Shell such as Crassostrea gigas (패각을 이용한 농업용 지속성 담지체의 효과에 대한 연구)

  • Oh, Eun-Ha;Kong, Seung-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.427-436
    • /
    • 2010
  • Much oyster shell is breeding by character and conduct of oyster-industry for a long time among them. An experimental study was carried out to investigate the recycling possibility of waste oyster shells, which induce environmental pollutions by piling up out at the open or the temporary reclamation. The purpose of this study is to develope eco-friendly binder using waste oyster shells, and to reinforce soils fur soft soil improvement. In this paper, a series of laboratory tests including compressive pot tests were performed to evaluate characteristics of soils treated by developed waste oyster shells with different water content of soils. Based on test results, eco-friendly Supporter manufactured from waste oyster shells were estimated as good resource materials for soft soil improvements. We got the conclusion by a series of experiment, It is verified that change of pH of soil is improved by mixing with oyster shells. The homogenization method for deducing apparent of oyster shells, which can consider micro-structure of mixed soil, is introduced. The improvement treatment leaded to enlarge fluctuation of soil moisture content. The effect of calcium concentration was good though improvement treatment of physical property. In addition, the crop yield in amelioration plots increased. It means that the increase of crop yield was caused by improvement of soil physical properties rather than improvement of calcium concentration.

Improvement of the geotechnical engineering properties of dune sand using a plant-based biopolymer named serish

  • Shabani, Khosro;Bahmani, Maysam;Fatehi, Hadi;Chang, Ilhan
    • Geomechanics and Engineering
    • /
    • v.29 no.5
    • /
    • pp.535-548
    • /
    • 2022
  • Recently, the construction industry has focused on eco-friendly materials instead of traditional materials due to their harmful effects on the environment. To this end, biopolymers are among proper choices to improve the geotechnical behavior of problematic soils. In the current study, serish biopolymer is introduced as a new binder for the purpose of sand improvement. Serish is a natural polysaccharide extracted from the roots of Eremurus plant, which mainly contains inulins. The effect of serish biopolymer on sand treatment has been investigated through performing unconfined compressive strength (UCS), California bearing ratio (CBR), as well as wind erosion tests. The results demonstrated that serish increased the compressive strength of dune sand in both terms of UCS and CBR. Also, wind erosion resistance of the sand was considerably improved as a result of treatment with serish biopolymer. A microstructural study was also conducted via SEM images; it can be seen that serish coated the sand particles and formed a strong network.