• Title/Summary/Keyword: Soil Heavy Metal

Search Result 1,004, Processing Time 0.024 seconds

Modality of Heavy Metal Contamination of Soil in Military Rifle Shooting Range (소화기 사격장의 중금속 오염 양상)

  • Lee, Kwang-Lyeol;Hyun, Jae-Hyuk
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.3
    • /
    • pp.58-63
    • /
    • 2016
  • The study examined the level of heavy metal contamination by dividing military rifle shooting ranges into the three areas, i.e firing, trajectory, and target. The target area was found to be contaminated at a level higher (Cu 845 mg/kg, Pb 30,487 mg/kg) than the Worrisome Level of Soil Contamination (hereinafter referred to as the “Worrisome Level”) The trajectory area was predicted to be free from contamination, but it did indicate contamination although it was pretty much lower (Cu 23 mg/kg, Pb 99 mg/kg) than Worrisome Level. This is attributed to the contamination spread when rearranging the soil of the target area during the maintenance of the shooting range. The firing area was also predicted to be free from heavy metal contamination, but the results analyzed indicated a contamination higher (Cu 201 mg/kg, Pb 2,286 mg/kg) than Worrisome Level. This is attributed to the fragments of the broken bullet scattering due to the pressure generated as the bullet leaves the muzzle. An examination of heavy metal contamination in the discharge area as well as gutters to prevent the intrusion of rain water from perimeter revealed a high level of contamination (Cu 298 mg/kg, Pb 6,497 mg/kg), which makes it necessary to take measures.

충북지역 폐금속광산 주변 토양오염도 평가

  • Jeong Myeong-Chae;Gang Man-Hui;Ji Han-Gu;Hwang Beom-Sun;Park Jeong-Gu;Jeong Hyeon-Seok
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.24-27
    • /
    • 2005
  • This study has focused on investigation on As and heavy metal contamination derived from metalliferous mining activities in the Choongbuk Province in Korea. Soil, mine effluent, surface water and ground water samples were taken in and around 27 abandoned metal mines, and analyzed for As, Cd, Cu, Ni, Pb and Zn using AAS and anions in water samples using IC. In general, the heavy metal concentrations in soils decreased with Increasing distance from the each mine audit. Tailings and mine waste soils from several mines contained over the guideline of Soil Conservation Act in Korea. Soil samples from the Seobo, Honga, Daehwa, Jeungjadong, Youngbo and Munbaek mines contained over the action levels of the metals due to intensive mining activities. Therefore, a proper remediation work needs to control the metal dispersion around the mines.

  • PDF

Interchange 주변토양의 중금속 농도 분포

  • 이주광;강혜진;강희만;이찬영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.271-274
    • /
    • 2002
  • Heavy metal concentrations of roadside soils around interchanges were found to decrease as Zn)Cu>Pb and be lower than the legal guideline levels. The concentrations of Cu, Pb and Zn in roadside soils around Kyeong-bu highway interchanges were 1.3 to 1.5 times higher those around Yeong-dong highway interchanges. Difference of heavy metal concentrations in soils seems to be caused by difference of traffic volume between Kyeong-bu and Yeong-dong highway interchanges. This means that contamination of interchange roadside soils mainly depends on traffic volume.

  • PDF

Heavy Metal Contamination and Process for Its Removal in the Vicinity of the Dalsung Cu-W Mine (달성광산(達成鑛山) 주변지역(周邊地域)에서의 중금속오염(重金屬汚染)과 이의 제거방안(除去方案))

  • Kim, Kyoung-Woong;Hong, Young-Kook;Kim, Taik-Nam
    • Economic and Environmental Geology
    • /
    • v.29 no.1
    • /
    • pp.57-63
    • /
    • 1996
  • The Dalsung copper-tungsten mine in the Taegu area, Korea was closed in 1975 and may be the sources of the heavy metal contamination in the tributary system and soil-plant system due to the mine drainage derived from the mine wastes and tailings. To examine the degree and extent of heavy metal contamination in the vicinity of Dalsung mine area, stream water and soil samples were taken and analyzed for heavy metals by ICP-AES and AAS. Highly contaminated soils are found near the Lower Tunnel No.0 ranging up to $1760{\mu}g/g$ As, $2060{\mu}g/g$ Cu, $1120{\mu}g/g$ Pb and 346 ${\mu}g/g$ Zn. From the results of the sequential extraction methods for the metal speciation, the heavy metals in soils may be derived from soil parent materials and acid mine drainage. With the processes for the heavy metal removal, most of the heavy metal ions in the acid mine drainage are removed by being exchanged with Ca ions held by the bentonite, hydroxyapatite and calcium hydoxide.

  • PDF

The Comparison of the Relationship between the Gunfire Shot and Its Resulting Heavy Metal Pollution Rate (소화기 사격장의 사격에 따른 중금속 오염도 비교(I))

  • Hong, Sung Tae;Hyun, Jae Hyuk
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.6
    • /
    • pp.1-5
    • /
    • 2014
  • The following research was initiated in order to compare the relationship between the amount of gunfire shot and its resulting heavy metal pollution rate. The research was conducted at two firing ranges located inside a military unit stationed in the rear strategical area, where one full distance firing range is used by soldiers in active service, and the other is used by recruits and reserves. The heavy metal pollution rate was measured also on water sample collected from the target zone while raining. Based on values such as the real amount of gunshot fired, amount of heavy metal in the soil of the target zone, and the degree of heavy metal pollution for each firing range, the research showed that although pollution rate was higher when more gunshots were fired, there was no close correlation between the two. The water samples showed that this might result from the soils containing heavy metals eroded and transported by rain due to the target zone having no vegetation.

Utilization of Biosolid for Enhanced Heavy Metal Removal and Biomass Production in Contaminated Soils (중금속 오염 토양 복원 및 바이오메스 생산량 증대를 위한 biosolid 활용)

  • Kim, Kwon-Rae;Naidu, Ravi;Kim, Jeong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.558-564
    • /
    • 2010
  • Cleaning up the landfill soil by phytoremediation in association with biomass production and utilization of biosolid as a soil amendment will be an attractive green technology. In order to examine this integrated green technology, in the current study of pot trial, heavy metal removal rate and biomass production were determined following cultivation of three different plant species in the landfill soil incorporated with biosolid at two different levels (25 ton $ha^{-1}$ and 50 ton $ha^{-1}$). Among the three plant species including Indian mustard (Brassica juncea), giant sunflower (Helianthus giganteus. L), and giant cane (Arundo donax. L), sunflower appeared to produce the largest biomass yield (19.2 ton $ha^{-1}$) and the produced amounts were magnificently increased with biosolid treatment compared to the control (no biosoild treatment). The increased production associated with biosolid treatment was common for other plant species and this was attributed to the biosolid originated nutrients as well as the improved soil physical properties due to the organic matter from biosolid. The elevated heavy metals in soil which was originated from the incorporated biosolid were Cu and Zn. Based on the phytoavailable amount of heavy metals from biosolid, the removed amount by plant shoots were 95% and 165% for Cu and Zn, respectively, when sunflower was grown. This indicated that mitigation of heavy metal accumulation in soils achieved by the removal of metal through sunflower cultivation enables the successive treatment of biosolid to soils. Moreover, sunflower showed heavy metal stabilization ability in the rhizosphere resulting in alleviation of metal release to ground water.

EDDS Effects on Heavy Metal Uptake by Bioenergy Plants (EDDS가 바이오에너지 작물의 중금속 흡수에 미치는 영향)

  • Lee, Junghun;Sung, Kijune
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.4
    • /
    • pp.8-14
    • /
    • 2015
  • Plants grown in metal-contaminated sites have to be managed and disposed of safely even in phytoremediation because heavy metals can be transferred to other organisms through the food chain, which could result in bioaccumulation in organisms of a higher trophic level. However, if the harvested plants could be used for bioenergy, the ecological risk is reduced and phytoremediation improves economic feasibility. This study researched the effects of EDDS (Ethylenediamine disuccinate) on the heavy metal uptake performance of Brassica campetris and Sorghum biocolor, both of which have potential as bioenergy plants. The results showed that EDDS could increase Pb, Cu, Ni, Cd, and Zn concentrations in the roots and shoots of both of these plants. Furthermore, EDDS reduced the metal inhibition of the S. bicolor length growth. The translocation factors (TF) of S. bicolor and B. campestris are smaller than one for all five heavy metals tested and decreased by the following order: heavy metal + EDDS > heavy metals only > uncontaminated soil. The results suggest that with regard to plant growth and metal accumulation, S. bicolor treated with EDDS is more suitable than is B. campestris for the phytoremediation of soils contaminated with multiple metal species.

A Comparison on the Effect of Soil Improvement Methods for the Remediation of Heavy Metal contaminated Farm Land Soil near Abandoned Mines (중금속 오염 농경지 토양의 복원을 위한 토량개량법의 효과 비교)

  • Yu, Chan;Yun, Sung-Wook;Kang, Sin-Il;Jin, Hae-Geun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.984-999
    • /
    • 2010
  • A long-term field demonstration experiment of selected stabilization method to reduce the heavy metal mobility in farmland soil contaminated by heavy metals around abandoned mine site was conducted. Field demonstration experiments were established on the contaminated farmland with the wooden plate(thickness=1cm) which dimension were width=200cm, Length=200cm, height=80cm and filled with treated soil, which was mixed with lime stone and steel refining slag except on control plot. Soil samples in the plots were collected and analyzed during the experiment period(2008. 2~2008. 8) after the installation of the plots. Field demonstration experiments results showed that the application ratio of lime stone 5% was effective for immobilizing heavy metal components in contaminated farmland soil.

  • PDF

Evaluation of Ecological Function of Mangrove Soil on Absorbing Heavy Metals: A Case Study from the Dongzhaigang Mangrove in China

  • Xin, Kun;Huang, Xing;Zhou, Qingqing;Chen, Zhili
    • Journal of Ecology and Environment
    • /
    • v.33 no.1
    • /
    • pp.15-18
    • /
    • 2010
  • Mangroves are special plant communities that live along intertidal zones in tropical and subtropical areas. They are regarded as one of the most important types of natural ecosystem in the world because of the many ecosystem functions that they perform, of which water purification is the most complex. Mangrove ecosystems are conducive to the deposition and retention of heavy metals. So it is important to understand the impact of heavy metals on mangrove ecosystems, and especially on soil subsystems. We examined the levels of heavy metals in the soil of mangroves in the Dongzhaigang Mangrove National Nature Reserve. Dongzhaigang, the first mangrove nature reserve established in China, is located south of Haikou in Hainan Island and encompasses $33.37\;km^2$, of which mangroves comprise $20.56\;km^2$. To assess the impact of human activities, we collected a large number of soil samples in four sampling areas (the protection station, the harbor, a tour area, and Yeboluo island) in the study area. We measured the concentrations of Cu, Pb, Zn and Cd in the soil samples using the spectra of polyatomic molecules. The average concentrations of Cu, Pb, Zn and Cd were $5.04\;{\mu}g/g$, $10.36\;{\mu}g/g$, $20.06\;{\mu}g/g$ and $0.06\;{\mu}g/g$, respectively, and the heavy metal concentrations were lowest in the protected area, highest in the harbor, and intermediate in Yeboluo Island and the tour area. The heavy metal concentrations in the soil collected from different sample plots are related not only to the physical and chemical properties of the soil, but also to the heavy metal emitted by nearby pollution sources. Our analysis indicates that tourist boats are the main pollution sources in the study area.

Assessment of Selected Heavy Metal Concentrations in Agricultural Soils around Industrial Complexes in Southwestern Areas of Korea

  • Kim, Dong-Jin;Park, Jung-Hwon;Lee, Jin-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.524-530
    • /
    • 2016
  • Agricultural soils near or around industrial complexes can contain a certain amount of heavy metals that readily enter the food chain and negatively affect human health. Therefore, we conducted the study to investigate the distribution of selected heavy metals, including arsenic (As), cadmium (Cd), chromium (Cr), nickel (Ni), lead (Pb), mercury (Hg), and zinc (Zn), in farm-land soils around fifteen industrial complexes in the southwestern provinces, Korea. The concentrations of heavy metals in the soil samples were determined by the pseudo-total aqua regia (3 HCl : $1HNO_3$) digestion procedure. The heavy metal concentrations in most soils examined did not exceed the levels of Soil Contamination Warning Standard (SCWS) for agricultural lands (Region 1) presented in Soil Environment Conservation Law (SECL) established by Ministry of Environment (MOE), Korea. However, only one sampling site showed higher As amount ($27.1mg\;kg^{-1}$) than the SCWS level of As ($25mg\;kg^{-1}$). Pollution index (PI) for heavy metals did not exceed 1.0. The PI values were significantly positively correlated (p < 0.01) with the heavy metal concentrations. In particular, the values of correlation coefficient between the Cd and Pb concentrations and the PI values were higher than those estimated from other combinations, and thus the amounts of Cd and Pb in the agricultural soils highly affected the PI values for the heavy metals.