• 제목/요약/키워드: Soil Heavy Metal

검색결과 1,005건 처리시간 0.031초

Heavy metals and pollution index of agricultural soils around industrial complexes in the Jeon-Buk regions of Korea

  • Suwanmanon, Sorakon;Kim, Ki In
    • 농업과학연구
    • /
    • 제46권4호
    • /
    • pp.799-811
    • /
    • 2019
  • The aim of this study was to evaluate heavy metal contamination and pollution index of agricultural soils around industrial complexes in the Jeon-Buk Regions of Korea. Soil samples near industrial complexes in 2017 were collected at two depths (0 - 15 and 15 - 30 cm) within a 500- and 1000-meter radius before planting. Eight heavy metals (Arsenic (As), cadmium (Cd), chromium (Cr), Cupper (Cu), nickel (Ni), lead (Pb), mercury (Hg) and zinc (Zn)) and the pollution index (PI), geoaccumulation index (Igeo) and soil pollution index (SPI) were evaluated based on soil contamination warning standard (SCWS). Overall, the heavy metal concentrations were below the SCWS. The PI ranged from 0.1 to 0.9 and categorized into Group 1 which is not polluted with any heavy metals. The average Igeo values of all the soil samples ranged from - 2.56 to 3.22. The Igeo values of Cd and Hg may not represent well the pollution index because the heavy metal concentrations in the soil is lower compared to the SCWS. In fact, based on the heavy metal concentrations, the Igeo for monitored soils should be categorized into Group 1, uncontaminated to moderately contaminated. However, the Igeo of Cd and Hg are classified into heavily contaminated. These results suggest that for calculating the Igeo, the heavy metal concentration and background concentration should be used very carefully if the heavy metal concentration in the soil is lower than the background concentration. SPI for all the soil samples ranged from 0.00 to 0.11 which indicates no heavy metal pollution was observed.

건설폐기물을 성토재로 사용한 산업단지에서의 중금속 오염 원인 규명 (Source Identification of Heavy Metal Contamination at an Industrial Complex Established Using Construction Wastes)

  • 주권호;김기범;남경필;정재웅;문세흠;최용주
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제23권1호
    • /
    • pp.54-62
    • /
    • 2018
  • This paper is aimed at source tracking of soil heavy metal contamination at a site established by reusing construction wastes. The soil heavy metal concentration at the study site peaked at a depth range of 5-10 m. Column studies were conducted to investigate the possibility of the contamination scenario of infiltration of stormwater carrying heavy metals of ground origin followed by selective heavy metal accumulation at the 5-10 m depth range. Almost all amount of lead, zinc, cadmium, and nickel introduced to the columns each packed with 0-5 m or 5-10 m field soil were accumulated in the column. The very poor heavy metal mobility in spite of the weak association of the heavy metals with the soil (characterized by a sequential extraction procedure) can be attributed to the high pH (10-11) of the construction wastes. From the results, the heavy metal contamination of the subsurface soil by an external heavy metal source was determined to be very unlikely at the study site. The column study applied in the current study is expected to be a useful methodology to present direct evidence of the contaminant source tracking at soil contamination sites.

Comparison between Siderophores Production by Fungi Isolated from Heavy Metals Polluted and Rhizosphere Soils

  • Hussein, Khalid A.;Joo, Jin Ho
    • 한국토양비료학회지
    • /
    • 제45권5호
    • /
    • pp.798-804
    • /
    • 2012
  • Although siderophores are induced primarily in response to iron deficiency, soil and other ecological factors can affect on this process. This study was to evaluate the production of siderophores by different fungal species isolated from heavy metal contaminated and uncontaminated soils. More than thirty fungal strains were isolated from heavy metal contaminated and rhizosphere uncontaminated soils. Chrome azurol sulfonate (CAS) was used for both quantitative and qualitative evaluation of siderophores production. No significant correlations were observed between the tested variables such as ultraviolet (UV) irradiation method and CAS-agar plate and heavy metal concentration in both soils. The production of siderophores in rhizosphere fungi was higher than those isolated from the contaminated soil; however, the difference was not significant. The siderophore production (%) by fungi isolated from heavy metal contaminated soil using UV irradiation method was positively correlated with the qualitative values using CAS-plate method (P<0.05). Pearson correlation test indicated a positive correlation between the quantitative and qualitative methods of detection for fungi isolated from rhizosphere and also those isolated from heavy metal contaminated soil.

나선형패들이 장착된 토양전기분해장치를 이용한 중금속 오염토양 정화에 관한 연구 (A Study on Remediation of Heavy Metal Contaminated Soil using a Soil Electrolysis Apparatus with Spiral Paddle)

  • 이준희;최영익;정진희
    • 한국환경과학회지
    • /
    • 제26권6호
    • /
    • pp.797-802
    • /
    • 2017
  • This study aimed to remove organic matter and heavy metals that could affect the recycling of soils contaminated by heavy metals, by means of electrolysis, carried out simultaneously with the leaching of the soil. To ensure better experimental equipment, a soil electrolysis apparatus, equipped with spiral paddles, was used to agitate the heavy-metal-contaminated soil effectively. The heavy-metal-contaminated soil was electrolyzed by varying the voltage to 5 V(Condition 1), 15 V(Condition 2), and 20 V(Condition 3), under the optimal operating conditions of the electrolysis apparatus, as determined through previous studies. The results showed that the pH of the electrolyte solution and the heavy-metal-contaminated soil, after electrolysis, tended to decrease with an increase in voltage. The highest removal efficiencies of TOC and $COD_{Cr}$ were 18.8% and 29.1%, 38.8% and 4.2%, and 33.3% and 50.0%, under conditions 1, 2 and 3, respectively. Heavy metals such as Cd and As were not detected in this experiment. The removal efficiencies of Cu, Pb and Cr were 4.7%, 8.3% and 2.1%, respectively, under Condition 1, while they were 42.9%, 15.2% and 22.1%, respectively, under Condition 2, and 4.7%, 23.0%, and 24.9%, respectively, under Condition 3. These results suggest that varying the voltage with the soil electrolysis apparatus for removing contaminants for the recycling of heavy-metal-contaminated soil allows the selective removal of contaminants. Therefore, the results of this study can be valuable as basic data for future studies on soil remediation.

토양 시료조제 방법이 총중금속 농도에 미치는 영향 (Effect of Soil Sample Pretreatment Methods on Total Heavy Metal Concentration)

  • 김정은;지원현
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제27권4호
    • /
    • pp.63-74
    • /
    • 2022
  • In analyzing heavy metals in soil samples, the standard protocol established by Korean Minstry of Environment (KSTM) requires two different pretreatments (A and B) based on soil particle size. Soil particles < 0.15 mm in diameter after sieving are directly processed into acid extraction (method A). However, if the quantity of soil particles < 0.15 mm are not enough, grinding of the particles within 0.15 mm ~ 2 mm is required (method B). Grinding is often needed for some field samples, especially for the soil samples retrieved from soil washing process that contain relatively large-sized soil grains. In this study, two soil samples with different particle size distribution were prepared and analyzed for heavy metals concentrations using two different pretreatment to investigate the effect of grinding. The results showed that heavy metal concentrations tend to increase with the increase of the fraction of small-sized particles. In comparison of the two pretreatments, pretreatment A yielded higher heavy metal concentration than pretreatment B, indicating significant influence of grinding on analytical results. This results suggest that the analytical values of heavy metals in soil samples obtained by KSTM should be taken with caution and carefully reviewed.

Determination of Bioconcentration Factor of Heavy Metal (loid)s in Rice Grown on Soils Vulnerable to Heavy Metal (loid)s Contamination

  • Lee, Seul;Kang, Dae-Won;Yoo, Ji-Hyock;Park, Sang-Won;Oh, Kyeong-Seok;Lee, Jin-Ho;Cho, Il Kyu;Moon, Byeong-Churl;Kim, Won-Il
    • 한국토양비료학회지
    • /
    • 제50권2호
    • /
    • pp.106-114
    • /
    • 2017
  • There is an increasing concern over heavy metal(loid) contamination of soil in agricultural areas including paddy soils. This study was conducted to determine the bioconcentration factor (BCF) for heavy metal(loid)s to brown rice grown in paddy soils vulnerable to heavy metal(loid)s contamination, for the quantitative health risk assessment to the residents living nearby the metal contaminated regions. The samples were collected from 98 sites nationwide in the year 2015. The mean and range BCF values of As, Cd, Cu, Ni, Pb, and Zn in brown rice were 0.027 (0.001 ~ 0.224), 0.143 (0.001 ~ 2.434), 0.165 (0.039 ~ 0.819), 0.028 (0.005 ~ 0.187), 0.006 (0.001 ~ 0.048), and 0.355 (0.113 ~ 1.263), respectively, with Zn showing the highest. Even though the relationship between heavy metal(loid) contents in the vulnerable soils and metal contents in brown rice collected at the same fields was not significantly correlated, the relationship between log contents of heavy metal(loid)s in the vulnerable soils and BCF of brown rice wes significantly correlated with As, Cd, Cu, and Zn in rice. In conclusion, soil environmental risk assessment for crop uptake should consider the bioconcentration factor calculated using both the initial and vulnerable heavy metal(loid) contents in the required soil and the crop cultivated in the same fields.

제련소 인근 토양에서 분리한 박테리아 생장에 미치는 중금속 및 pH 영향 (Effects of Heavy Metal and pH on Bacterial Growth Isolated from the Contaminated Smelter Soil)

  • 금미정;윤민호;남인현
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제20권4호
    • /
    • pp.113-121
    • /
    • 2015
  • The contaminated soil at abandoned smelter areas present challenge for remediation, as the degraded materials are typically deficient in nutrients, and rich in toxic heavy metals and metalloids. Bioremediation technique is to isolate new strains of microorganisms and develop successful protocols for reducing metal toxicity with heavy metal tolerant species. The present study collected metal contaminated soil and characterized for pH and EC values, and heavy metal contents. The pH value was 5.80, representing slightly acidic soil, and EC value was 13.47 mS/m. ICP-AES analytical results showed that the collected soil samples were highly contaminated with various heavy metals and metalloids such as lead (183.0 mg/kg), copper (98.6 mg/kg), zinc (91.6 mg/kg), and arsenic (48.1 mg/kg), respectively. In this study, a bacterial strain, Bacillus cereus KM-15, capable of adsorbing the heavy metals was isolated from the contaminated soils by selective enrichment and characterized to apply for the bioremediation. The effects of heavy metal on the growth of the Bacillus cereus KM-15 was determined in liquid cultures. The results showed that 100 mg/L arsenic, lead, and zinc did not affect the growth of KM-15, while the bacterial growth was strongly inhibited by copper at the same concentration. Further, the ability of the bacteria to adsorb heavy metals was evaluated.

Assessment of Heavy Metal (loid) Pollution Using Pollution Index in Agricultural Field Adjacent to Industrial Area

  • Min, Kyungjun;Hong, Youngkyu;Choi, Wonsuk;Kim, Daebok;Kim, Sungchul
    • 한국토양비료학회지
    • /
    • 제49권6호
    • /
    • pp.768-775
    • /
    • 2016
  • Heavy metal pollution in arable field is an critical problem due to crop safety. For this reason, national survey of heavy metal pollution in the arable field near at the industrial area has been conducted from 1999 in Korea. The main purpose of this research was to monitor heavy metal pollution in Chungnam/chungbuk province and to evaluate pollution index (PI) in soil. Total of 15 sampling locations were examined and average concentration of each heavy metals were following: As - $2.99{\pm}2.63$, Cd - $0.23{\pm}0.07$, Cu - $9.35{\pm}6.48$, Ni - $9.26{\pm}8.03$, Pb - $10.18{\pm}3.32$, Zn - $52.9{\pm}17.18$. No sampling site was exceeded threshold level of each heavy metals. Calculated PI in soil was ranged between 0.03 - 0.27 indicating that also no heavy metal pollution is occurred in examined sampling locations. Although, no heavy metal pollution was observed in the examined sites but monitoring of heavy metal pollution should be continued for possible accidental pollution in arable field near at the industrial area.

Evaluating Ecotoxicity of Surface Water and Soil Adjacent to Abandoned Metal Mines with Daphnia magna and Eisenia fetida

  • Kim, Dae-Bok;Choi, Won-Suk;Hong, Young-Kyu;Kim, Soon-Oh;Lee, Sang-Woo;Lee, Byung-Tae;Lee, Sang-Hwan;Park, Mi-Jung;Kim, Sung-Chul
    • 한국토양비료학회지
    • /
    • 제49권1호
    • /
    • pp.81-86
    • /
    • 2016
  • Heavy metal pollution in agricultural fields at the abandoned metal mines has been serious problems in Korea. In order to manage heavy metal pollution in surface water and soil, numerous remediation strategies have been established. Therefore, main purpose of this research was to examine feasibility of ecological toxicity assessment for establishing management strategy in heavy metal polluted agricultural fields. Heavy metal concentration in surface water and soil was monitored along with ecotoxicity experiment with Daphnia magna and Eisenia fetida. Result showed that high toxicity was observed in heavily polluted agricultural field with heavy metals. In case of mortality of Daphnia magna (85%) and Eisenia fetida (6.7%), the highest ratio was observed when heavy metal concentration in surface and soil was high. Calculated ecotoxicity index (EI) ranged 0.06-0.30 and the highest EI was observed in heavily polluted sites among 5 abandoned metal mines. Overall, ecological toxicity assessment is necessary to evaluate heavy metal pollution in agricultural fields near at the abandoned metal mines along with chemical concentration analysis.

폐광산 주변 토양 내 중금속의 연속추출법과 토양오염공정시험기준에 대한 비교 연구 (A study on the Comparison of the Heavy Metal in Abandoned mine Soil by Sequential Extraction Exthaction Methods)

  • 이종득;김태동;전기석;김휘중
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제16권6호
    • /
    • pp.95-105
    • /
    • 2011
  • Total extraction method and environmental standards for heavy metals in soils were revised in regulation recently. In case of Area 3, as the law amended, the soil pollution level has gone up to 4 to 13 times higher depending on the type of heavy metal. In this study, it compares the properties of heavy metals of soil by sequential extraction and total extraction methods depending on the analysis method, using the soil around mine. In case of arsenic, the soil pollution level has gone up to 4 times higher, but 6 to 10 times in the sample soil. Also, according to the results of portability evaluation depending on the type of existence form of heavy metal it exists as residual form in mine waste rock, which is less likely to move, while it exists as migrated form in tailing. Therefore, it should be considered to evaluate the soil pollution and decide the contaminated bounds depending on the existence form of heavy metals on soil to restore the polluted soil.