• Title/Summary/Keyword: Soil Heating

Search Result 198, Processing Time 0.026 seconds

The Effect of Soil Warming on the Greenhouse Heating Load (지중가온이 온실의 난방부하에 미치는 영향)

  • Nam, Sang-Woon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.5
    • /
    • pp.51-60
    • /
    • 2006
  • In order to examine the heat transfer characteristic of a soil warming system and effects of soil warming on the greenhouse heating load, control experiments were performed in two greenhouses covered with double polyethylene film. One treated the soil warming with an electric heat wire and the other treated a control. Inside and outside air temperature, soil temperature and heat flux, and heating energy consumption were measured under the set point of heating temperature of $5,\;10,\;15,\;and\;20^{\circ}C$, respectively. Soil temperatures in a soil warming treatment were observed $4.1\;to\;4.9^{\circ}C$ higher than a control. Heating energy consumptions decreased by 14.6 to 30.8% in a soil warming treatment. As the set point of heating temperature became lower, the rate of decrease in the heating energy consumptions increased. The percentage of soil heat flux in total heating load was -49.4 to 24.4% and as the set point of heating temperature became higher, the percentage increased. When the set point of heating temperature was low in a soil warming treatment, the soil heat flux load was minus value and it had an effect on reducing the heating load. Soil heat flux loads showed in proportion to the air temperature difference between the inside and outside of greenhouse but they showed big difference according to the soil warming treatment. So new model for estimation of the soil heat flux load should be introduced. Convective heat transfer coefficients were in proportion to the 1/3 power of temperature difference between the soil surface and the inside air. They were $3.41\;to\;12.42\;W/m^{2}^{\circ}C$ in their temperature difference of $0\;to\;10^{\circ}C$. Radiative heat loss from soil surface in greenhouse was about 66 to 130% of total heating load. To cut the radiation loss by the use of thermal curtains must be able to contribute for the energy saving in greenhouse.

Heating Characteristics of the Soils for the Application of Electrical Resistance Heating with Soil Vapor Extraction (전기 저항열을 이용한 유류 오염토 복원공정 적용을 위한 토양의 가열특성 연구)

  • Yun Yeo-Bog;Ko Seok-Oh;Park Gi-Ho;Park Min-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.1
    • /
    • pp.45-53
    • /
    • 2006
  • This study was performed to evaluate the heating characteristics of soils for the application of electrical resistance heating process combined with soil vapor extraction. Laboratory tests were conducted to find out optimum heating conditions by the adjustment of electrical supply and electrode. Results show that fine soil particles are more efficient for electrical heating. As water content of soil increases, more efficient electrical heating is observed. However, as the soil is saturated with water above the soil porosity, decrease in the heating efficiency is observed. The higher the voltage, is and the shorter the distance between the electrodes is, the better the heating efficiency is. The soil contaminated by fuel is also more efficient than non-contaminated soil in electrical resistance heating. From the relationship between the intial electrical current and the conductivity obtained in this study, soil temperature by electrical heating can be estimated.

Study on Temperature Variation by Greenhouse Soil Warming System Using Solar Thermal Energy (3) - Verification Experiment on Commercialization of Cultivation - (태양열을 이용한 시설재배 지중변온가온의 토양 온도특성 연구(3) - 지중변온가온의 재배실용화 실증시험 -)

  • Kim, Jin-Hyun;Kim, Tae-Wook;Song, Jae-Kwan;Nah, Kyu-Dong;Ha, Yu-Shin;Kim, Tae-Soo;Kim, Eun-Tae
    • Journal of Biosystems Engineering
    • /
    • v.36 no.3
    • /
    • pp.211-216
    • /
    • 2011
  • According to the result of the first report and the second report of this study, it was expected that soil heating in a protected cultivation in winter season would affect the initial growth and development of fruit. Based on the result of previous study, we compared height, leaf number, leaf area, fruit weight, crop growth rate (CGR), features and quantity of cucumber for 3 months after planting between the soil heating group and the non-heating group. The result were summarized as follows: The height, leaf number, leaf area and fruit weight of cucumber in the soil heating group were 12.5%, 14.6%, 21.4% and 22.8% higher, respectively, compared to those of cucumber in the non-heating group. Although both the soil heating group and the non-heating group similarly showed an increasing pattern in CGR after transplanting, the soil heating group showed the increased CGR by 12.1% compared to that of the non-heating group. The quantity of cucumber in the soil heating group was about 26% higher than that of the non-heating group. It is assumed that the activation of initial growth and development of fruit in the heating group resulted in the increase of quantity.

A Preliminary Study for Microwave Application to Energy Efficient Contaminated Soil Cleanup (마이크로파를 적용한 에너지 효율적인 오염토양 정화를 위한 예비연구)

  • Ham, Seok-Jin;Yang, In-Ho;Oh, Hyun-Sang;Cho, Hyeon-Jo;Kim, Gun-In;Jeong, Sang-Jo
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.3
    • /
    • pp.28-37
    • /
    • 2011
  • A preliminary study for energy efficient soil heating and contaminant removal using microwave was conducted. Soils sampled from floodplain were heated with microwave oven, and soil heating property and energy efficiency were compared to those heated with electrical furnace. In addition the effects of water, soil organic matter, and contaminated diesel on soil heating with microwave were investigated. Even though the electrical power consumption of electrical furnace and microwave oven were similar, temperature of soil heated with microwave oven was significantly higher than that of soil heated with electrical furnace. The increase of soil moisture content delays the raise of soil temperature during heating it with microwave oven. However, the effects of total petroleum hydrocarbon (TPH) (<10%) in contaminated soil matrix and small amount of soil organic matter (<5%) on the increase of soil temperature by microwave were not significant. Further studies for contaminated soils with different texture using pilot scale microwave reactor are required for application of this technique in the field.

Desorption Characteristics of Volatile Organics Compounds in Soil by Microwave Heating (마이크로파 가열에 의한 토양 유기오염물질 탈착특성)

  • 문경환;김덕찬
    • Journal of environmental and Sanitary engineering
    • /
    • v.11 no.2
    • /
    • pp.65-73
    • /
    • 1996
  • The objective of this study is to investigate the removal efficiency of volitile organic compounds in soil, and the mechanism of desorption by bench scale microwave heating, Silt soil used for experiment and was impregnated with toluene, tetrachloroethylene, o-xylene and p-dichlorobenzene and the microwave treatment was conducted in a modified domestic microwave oven : 2450MHz, 700W. According to the results of the research the removal efficiency was improved with increasing water contents and the soil temperature appeared to plateau period extending to 2-3minutes corresponds to the temperature a which steam distillation was expected. The value of removal rate constant (k) were calculated on dry and moisty silt soil, respectively, which showed linear with increasing microwave heating time. Therefore, addition of a certain amount of water to the contaminated soil can efficiently enhance the ability of the soil to absorb microwave energy and promote the evaporation of the volitile contaminants.

  • PDF

Thermal Characteristics and Simulation Model Development for Greenhouse Heating System with Heat Pump (열펌프에 의한 그린하우스 난방시스템의 열특성과 시뮬레이션 모델개발)

  • 노정근;송현갑
    • Journal of Biosystems Engineering
    • /
    • v.26 no.2
    • /
    • pp.155-162
    • /
    • 2001
  • The greenhouse heating system with heat pump was built for development of simulation model and validation. The computer simulation model for the system to predict temperature of air and soil and moisture content of soil in the greenhouse were developed, and its validity was justified by actual data. From the analysis of experimentally measured data and the simulation output, following results were obtained. 1. The expected values of inside air temperature for the heating system with heat pump were very much close to the experimental values. 2. In the heating system with heat pump, the expected values of day time surface temperature of soil by computer simulation were very much similar to the measured values, but those of night time were higher than the measured value by at most 2.0$\^{C}$. 3. The simulation model predicted temperature of greenhouse film as of 1$\^{C}$ below than the mean value of ambient air and greenhouse air temperature. 4. Heat loss value of daytime was found to be larger than that of nigh as much as 1.3 to 2.3 times for the heating system with heat pump. 5. In the heating system with heat pump, when the lowest ambient temperature was -8$\^{C}$∼-7$\^{C}$ the air temperature of greenhouse was 5$\^{C}$∼6$\^{C}$, thus the heat pump heating system contributed in greenhouse heating by 13$\^{C}$.

  • PDF

Improvement of Shallow Soil Using Electric Heating Equipment (전기가열장치를 이용한 표층지반개량)

  • Park, Min-Cheol;Im, Eun-Sang;Shin, Beck-Chul;Han, Heui-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.10
    • /
    • pp.41-54
    • /
    • 2012
  • This paper is to develop the method of surface soil improvement by electric heating equipment. For this purpose, the electric heating systems were invented to apply to the in-situ soil. Iaboratory tests were done to study the behaviors of sea clays by eletric heating. In lab tests, two different heating temperatures, $70^{\circ}C$ and $110^{\circ}C$, were applied to the saturated clays to examine the relationship between evaporation and compaction. In addition, trafficability was analyzed to the heated by applying cone penetrometer to the heated clays Furthermore, in-situ tests were conducted to analyze the range of soil improvement and strength variations. The temperature changes in field were measured and they were compared with those of the commercial program (Temp/W). Also, the bearing capacities of electrically heated field were tested by PBT (plate bearing test). Several conclusions were derived from the results of the numerical analysis and tests (lab and field). The improvement ranges and strength variations of electrically heated soil depended on the heating temperature and time. If the heating temperature is more than $100^{\circ}C$ evaporating the ground water, the bearing capacity and settlement increased rapidly. The bearing capacities of in-situ soil increased more than 3 times, and heated soil emitted a lot of vapors. The soil around electric heater was sintered completely, and its range was almost 20 cm.

Treatment Cost Comparison and Development of Sustainability Indices for Microwave Soil Remediation of TPHs(Total Petroleum Hydrocarbons)

  • Kim, Dong Uk;Koo, Ja-Kong
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.5
    • /
    • pp.11-15
    • /
    • 2015
  • The three processes of 1) high- & low-temperature microwave heatings, 2) the soil washing, and 3) the thermal desorption processes in soil remediation are analysed on the treatment cost data for 2003-2012 years. The cost of microwave heating method with at temperature 500-700℃, for 30 minutes, and at 4-6 kW is approximately 10 $/ton (13,000 ₩) due to the deep through heating of micro-wave, the soil washing with chemicals is about 80 $/ton (85,000 ₩) due to the chemicals & duration, and the thermal desorption process is around 40 $/ton (41,000 ₩) from the less efficiency. Furthermore the sustainability has been assessed, and suggestions are made. 1) Green; the minimal environmental footprint, 2) Growth; the least cost, 3) Shared; the social & environmental justice, 4) Smart; the microwave characteristics of deep through irradiation & heating, and 5) Mutuality; the flexibility of the technology. More additives including water, the government support, and public relation are suggested realizing the microwave in this condition is not harmful to human beings.

A Study on Treatment of a Contaminated Soil by Oil using Continuous System of High Temperature Heating Element and Microwave (마이크로웨이브와 고온발열체를 이용한 연속식 공정의 유류오염토양 처리에 관한 연구)

  • Ha, Sang-An;You, Mi-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.1
    • /
    • pp.8-12
    • /
    • 2012
  • This study is maintains the condition of high temperature (above $600^{\circ}C$) within a short time using on microwave and high temperature heating elements. And removal characteristics according to changes in soil moisture, microwave power and temperature through the decomposition of the contaminated soil by oil. The difficulty resolvability material was sort of lubricating oil having long carbocyclic (C18-C50) and TPH removal rate reached 85.2% at 6 kW and $700^{\circ}C$ and thus the contaminant was removed 1,788 mg/kg within a process time of 40 minutes. In the case of light oil, gasoline contaminated soil, the removal amount showed 567 mg/kg and the treatment rate reached 98.4% at 6 kW, $500^{\circ}C$ and 20 minute. In the case of non-resolvability reached TPH concentrations on 2,000 mg/kg of worrisome level of soil contamination in the 3 zones at 6 kW, $700^{\circ}C$ and 30 minute. At the time, showed up processing costs 8,173 won per ton.

Derivation of Optimum Operating Conditions for Electrical Resistance Heating to Enhance the Flushing Effect of Heavy Oil Contaminated Soil (중질유 오염토양의 세정효과를 증진시키기 위한 전기저항가열의 최적 운전조건 도출)

  • Lee, Hwan;Jung, Jaeyun;Kang, Doore;Lee, Cheolhyo
    • Journal of Environmental Impact Assessment
    • /
    • v.29 no.3
    • /
    • pp.219-229
    • /
    • 2020
  • This study evaluated the applicability of the convergence technology by deriving the optimum conditions about operating factors of electrical resistance heating to enhance the soil flushing effect on soil contaminated with bunker C oil in the coastal landfill area. As a result of the batch scale experiment, the flushing efficiency of the VG-2020 was higherthan that of the Tween-80, and the flushing efficiency increased by about 1.4 times at 60℃ compared to room temperature. As a result of the electrical resistance heating box experiment, soil temperature rose to 100℃ in about 40~80 minutes in soil with water content of 20~40%, and it was found that the heat transfer efficiency is excellent when the pipe-shaped electrode rod with STS 316 material is located in a triangular arrangement in saturated soil. In addition, it was confirmed that the interval between the electrode rods to maintain the soil temperature above 60℃ under the optimum conditions was 1.5 m, and the soil flushing box experiment accompanying electrical resistance heating showed TPH reduction efficiency of about 55% at 5 Pore Volume, and satisfied the Korean standard for the conservation of soil (less than TPH 2,000 mg/kg) at 10 Pore Volume.