• Title/Summary/Keyword: Soil Fertility Management

Search Result 80, Processing Time 0.026 seconds

IoT based Electronic Irrigation and Soil Fertility Managing System

  • Mohammed Ateeq Alanezi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.4
    • /
    • pp.146-150
    • /
    • 2023
  • In areas where water is scarce, water management is critical. This has an impact on agriculture, as a significant amount of water is used for that purpose. Electronic measurement equipment are essential for regulating and storing soil data. As a result, research has been conducted to manage water usage in the irrigation process. Many equipment for managing soil fertility systems are extremely expensive, making this type of system unaffordable for small farmers. These soil fertility control systems are simple to implement because to recent improvements in IoT technology. The goal of this project is to develop a new methodology for smart irrigation systems. The parameters required to maintain water amount and quality, soil properties, and weather conditions are determined by this IoT-based Smart irrigation System. The system also assists in sending warning signals to the consumer when an error occurs in determining the percentage of moisture in the soil specified for the crop, as well as an alert message when the fertility of the soil changes, since many workers, particularly in big projects, find it extremely difficult to check the soil on a daily basis and operate agricultural devices such as sprinkler and soil fertilizing devices.

Designing a Remote Electronic Irrigation and Soil Fertility Managing System Using Mobile and Soil Moisture Measuring Sensor

  • Asim Seedahmed Ali, Osman;Eman Galaleldin Ahmed, Kalil
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.12
    • /
    • pp.71-78
    • /
    • 2022
  • Electronic measuring devices have an important role in agricultural projects and in various fields. Electronic measuring devices play a vital role in controlling and saving soil information. They are designed to measure the temperature, acidity and moisture of the soil. In this paper, a new methodology to manage irrigation and soil fertility using an electronic system is proposed. This is designed to operate the electronic irrigation and adds inorganic fertilizers automatically. This paper also explains the concept of remote management and control of agricultural projects using electronic soil measurement devices. The proposed methodology is aimed at managing the electronic irrigation process, reading the moisture percentage, elements of soil and controlling the addition of inorganic fertilizers. The system also helps in sending alert messages to the user when an error occurs in measuring the percentage of soil moisture specified for crop and a warning message when change happens to the fertility of soil as many workers find difficulty in daily checking of soil and operating agricultural machines such as irrigation machine and soil fertilizing machine, especially in large projects.

South Dakota Soils: Their Genesis, Classification, and Management (South Dakota 토양의 발생, 분류 및 관리)

  • Malo, Douglas D.;Ryu, Jin-Hee;Kim, Si-Joo;Chung, Doug-Young
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.3
    • /
    • pp.413-433
    • /
    • 2010
  • South Dakota is an important agricultural state in the United States with annual cash receipts from agricultural products exceeding $9 billion dollars. This production is possible because of large areas of productive soils. This publication describes the general characteristics and qualities of the major soil groups recognized in South Dakota. The soil forming factors are briefly described, soil classification is introduced, and the genesis of typical Udalf and Ustoll soils are discussed. Soil management issues impacting the use of SD soils are considered. Long-term (>70 yrs) cultivation has significantly reduced surface soil organic carbon levels (>30% reduction) when compared to non-cultivated soil. Soil test phosphorus levels significantly increased in cultivated fields due to commercial P fertilization. The major long-term production problems for SD soils are conservation of soil moisture, organic matter and nitrogen losses, fertility management, and wind and water erosion control.

Environmental Impact and Safe Vegetable Production of Korean Organic Farming only Appling Organic Fertilizer to Maintain/Increase Soil Fertility

  • Sohn, Sang-Mok;Kim, Young-Ho
    • Korean Journal of Organic Agriculture
    • /
    • v.8 no.1
    • /
    • pp.111-129
    • /
    • 1999
  • In order to get some basic data to check the environmental sound function against soil and water pollution and the safe vegetable production by korean organic farming where an internationally recognized basic concepts of soil fertility management for organic farming is not practiced and only applying the organic fertilizer to maintain the soil fertility, the chemical characteristics of soils and $NO_{3}^{-}$ content of chinese cabbage and lettuce cultivated by the conventional farming, greenhouse cultivation and organic farming were investigated. The highest value of $NO_{3}^{-}$-N in 0~30cm subsoil among the three different farming systems was found in the subsoil of organic farming and it was 3.6 and 6.6 times higher than those of conventional farming in chinese cabbage and lettuce respectively. $P_2O_5$ accumulation in the rhizosphere by organic farming also showed the highest value. The accumulation of $NO_{3}^{-}$-N and $P_2O_5$ in organic farming soil were similar or even more higher to those of greenhouse cultivation. The $NO_{3}^{-}$ accumulation in the vegetable by organic farming reached 3224ppm for chinese cabbage and 2543ppm for lettuce, and it were 4.7 and 6.4 times higher than those by conventional farming. It was concluded that there is urgently necessary to introduce the main concepts of soil fertility management of the Basic Standard of IFOAM, EU regulation and FAO/WHO Codex Alimentarius on organic agriculture(draft) into korean organic agriculture for the operation of environmental sound system and the production of sate vegetable in terms of $NO_{3}^{-}$ content.

  • PDF

Dynamics of Exchangeable Magnesium of Soil in Long-term Fertilization Experiment

  • Kim, Myung-Sook;Park, Seong-Jin;Lee, Chang-Hoon;Yun, Sun-Gang;Ko, Byong-Gu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.641-647
    • /
    • 2015
  • Monitoring of soil fertility by long-term application of fertilizers is necessary to improve the fertility of soil and the productivity of crop. The objective of this study was conducted to investigate the changes of exchangeable Mg by continuous application of fertilizers from 1969 to 2014. The treatments were no fertilization (No fert.) and fertilization (NPK, NPK+C, NPK+S, and NPK+CS). The concentration of exchangeable Mg in No fert., NPK+C, and NPK+S treatments tended to increase from 1965 to 1975, but decrease gradually from 1976 to 1987, and increase again after 1988. Based on these, the changes of exchangeable Mg were divided into period I ('69 ~'75), period II ('76~'87), and period III ('88~'14). Especially, exchangeable Mg decreased in the period II. This was presumed that a significant amount of Mg from topsoil were leached into subsoil by break of plow pan and some of subsoil was incorporated into topsoil according to change of plowing depth by replacement of tillage machinery. It could be possible that exchangeable Mg in NPK, NPK+S, and NPK+CS was accumulated in the depth of 15~20 cm. For the period III, exchangeable Mg in No fert., NPK, NPK+C, NPK+S, and NPK+CS treatments increased at rates of 0.013, 0.018, 0.015, 0.023, and $0.024cmolckg^{-1}{\cdot}yr^{-1}$ respectively. Exchangeable Mg level in NPK+S was lower than the other treatments in the period I and period II, but higher than in the period III. This result was attributed to replacement of silicate fertilizer type from wollastonite (Mg 0.3%) to silicate fertilizer (Mg 3%). Also, exchangeable Mg level of No fert. treatment increased, which showed that Mg concentration of irrigated water had the greatest impact on Mg accumulation of soil. Recently, Mg level of irrigated water tended to increase, indicating that Mg concentration of water will affect greatly the concentration of exchangeable Mg of soil in the future. Like these, the changes of exchangeable Mg were greatly influenced by agricultural environment such as plowing depth, plow pan, content of fertilizer, and quality of irrigated water. Considering these agricultural environment, the proper management of soil is needed for the improvement of soil fertility and crop productivity.

Long-term Application Effect of Silicate Fertilizer on Soil Silicate Storage and Rice Yield

  • Kim, Myung-Sook;Park, Seong-Jin;Lee, Chang-Hoon;Ko, Byong-Gu;Yun, Sun-Gang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.819-825
    • /
    • 2016
  • Monitoring of soil fertility and crop productivity in long-term application of silicate fertilizers is necessary to use fertilizers efficiently. This study was conducted to investigate effects of continuous application of silicate fertilizer for rice cultivation from 1969 to 2014. The treatments were no silicate fertilizer treatments (N, NC, NPK, and NPKC) and silicate fertilizer treatments (N+S, NC+S, NPK+S, and NPKC+S). The 46-yr input of $2\;ton\;ha^{-1}yr^{-1}$ of silicate fertilizer increased pH 0.6 ~ 1.1 and exchangeable Ca $2.0{\sim}2.4cmol_c\;kg^{-1}$ in silicate fertilizer treatments (N+S, NC+S, NPK+S, and NPKC+S) compared with no silicate fertilizer treatments (N, NC, NPK, and NPKC) because silicate fertilizer included Ca component. Also, available silicate concentrations of silicate fertilizer treatments (N+S, NC+S, NPK+S, and NPKC+S) increased $169mg\;kg^{-1}$ compared to no silicate fertilizer treatments. In Period II ('90~'14), the mean annual Si field balance varied from 62 to $175kg\;ha^{-1}yr^{-1}$ in silicate fertilizer treatments, indicating continuous accumulation of soil Si. Silicon uptake and grain yield of rice had greater differences between N treatment and N+S treatment than other treatments. This showed that the application of silicate fertilizer had greater effect in nutrient-poor soils than in proper nutrient soils. Thus the application of silicate fertilizer led to improvement the fertility of soil and increasement of rice production for the lack of soil nutrients.

Comparison of Organic Matter Dynamics between Natural Deciduous Broad-Leaved Forest and Adjacent Artificial Evergreen Coniferous Forest

  • Takahiro, Ichikawa;Terumasa, Takahashi;Yoshito, Asano
    • The Korean Journal of Ecology
    • /
    • v.27 no.4
    • /
    • pp.217-224
    • /
    • 2004
  • The purpose of this study is to clarify the effects of the conversion of the forest management type from a natural deciduous broad-leaved forest to an artificial evergreen coniferous forest based on organic matter dynamics. We investigated the amounts and carbon contents of the forest floor and the litterfall, soil chemical characteristics and cellulose decomposition rates in the natural deciduous broad-leaved forest and adjacent artificial evergreen coniferous forest. In the artificial evergreen coniferous forest were planted Japanese cypress (Chamaecyparis obtusa) on the upper slope and Japanese cedar (Cryptomeria japonica) on the lower slope. The soil carbon and nitrogen contents, CEC and microbial activity had decreased due to the conversion of the forest management type from a natural deciduous broad-leaved forest to an artificial Japanese cypress forest, and were almost the same for the conversion to a Japanese cedar forest. Under the same conditions, it is considered that the soil fertility was different by planting specific tree species because the organic matter dynamics were changed by them.

Long-term Effects of Inorganic Fertilizer and Compost Application on Rice Sustainability in Paddy Soil

  • Lee, Chang Hoon;Park, Chang Young;Jung, Ki Youl;Kang, Seong Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.3
    • /
    • pp.223-229
    • /
    • 2013
  • Sustainability index was calculated to determine the best management for rice productivity under long-term inorganic fertilizer management's practices. It is based on nutrient index, microbiological index and crop index related to sustainability as soil function. Indicators for calculating sustainability index were selected by the comparison of soil properties and rice response in paddy soil with fertilization. Total twenty two indicators were determined to assess nutrient index, microbiological index and crop index in order to compare the effect of different fertilization. The indices were applied to assess the sustainability with different inorganic fertilizer treatments such as control, N, NK, NP, NPK, NPK+Si, and NPK+Compost. The long-term application of compost with NPK was the highest sustainability index value because it increased nutrient index, microbial index and crop index. The use of chemical fertilizers resulted in poor soil microbial index and crop index, but the treatments like NP, NPK, and NPK+Si were maintained sustainability in paddy soil. These results indicate that application of organic and chemical fertilizer could be a good management to improve rice sustainability in paddy soil.

Fertility Status in Northeastern Alpine Soils of South Korea with Cultivation of Vegetable Crops (강원도 고랭지 채소 재배지의 토양 비옥도관리 현황과 전망)

  • Yang, Jae-E.;Cho, Byong-Ok;Shin, Young-Oh;Kim, Jeong-Je
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2001
  • Total upland area for cultivating the vegetable crops in the Alpine soils of Northeastern South Korea has been extending its limit to meet the increasing demand of vegetable food in recent decades. About 70% of these alpine soils are located in over 7% of the slope and most of vegetable crops have been cultivated intensively without practicing the best management systems. Thus, soil erosion and continuous cropping system have degenerated the soil fertility and shown detrimental effects on water quality. We initiated an intensive and extensive investigation to characterize the fertility problems encountered in these uplands. Objectives of this paper were to characterize the fertility status in the Alpine soils cultivated with vegetable crops for many years and to provide the recommendations for adequate soil management measures including fertilization and erosion control. Soils in general have good drainage with textural classes of loam or sandy loam. Their topographical characteristics tended to lead them to shallow plow layers, and the steepness of the terrain created erosion hazard. Of the soils examined, about 11% of uplands over 30% gradient was found in need of an urgent reforestation. A high content of gravel and firm hardness of soil attributed to inhibit the utilization of farm machinery and plant-root development. The average soil pH 5.6 was slightly low relative to pH 5.70 of the national average. Organic matter content was high compared with 2.0% of national average, but decreased with the prolonged cultivation periods. Available $P_2O_5$ concentration was unusually high due to the consequence of over dose application with chemical and organic fertilizers. Exchangeable cations as Ca, Mg, and K were appeared to be decreased in these regions with prolonging the cultivation periods. There were no significant differences in cation exchange capacity (CEC) and electrical conductivity (EC) among locations. Heavy metal contents were mostly lower than the threshold of danger level designated by Soil Environment Conservation Law of South Korea. Results indicated that a proper countermeasure and the best management practice should be immediately implemented to conserve the top soil and fertility in the Alpine regions.

  • PDF

Effects of nutrient-coated biochar amendments on the growth and elemental composition of leafy vegetables

  • Jun-Yeong Lee;Yun-Gu Kang;Jun-Ho Kim;Taek-Keun Oh;Yeo-Uk Yun
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.967-976
    • /
    • 2023
  • Biochar is emerging as a promising substance for achieving carbon neutrality and climate change mitigation. It can absorb several nutrients via ion bonding on its surface functional groups, resulting in slow dissociation of the bonds. Biochar, like organic fertilizers, contributes to sustainable nutrient management. The purpose of this study was to investigate the effects of nutrient-coated biochar amendments on leafy vegetables production and soil fertility. The nutrient-coated biochar was produced by soaking rice husk biochar in a nutrient solution containing nitrogen (N), phosphorus, and potassium for 24 hours. Nutrient-coated biochar and organic fertilizers were applied to soil at a rate of 120 kg·N·ha-1. The growth components of the leafy vegetables showed that nutrient-coated biochar led to the highest fresh weight (FW) of both lettuce and kale (i.e., 146.67 and 93.54 g·plant-1 FW, respectively). As a result, nutrient-coated biochar amendments led to superior yield compared to the control treatment and organic fertilization. The elemental composition of leafy vegetables revealed that soil amended with nutrient-coated biochar resulted in higher nutrient contents, which was attributed to the high nutrient contents supplied by the rice husk biochar. Soil amendment with nutrient-coated biochar positively enhanced the soil fertility compared to amendment with organic fertilizer. Therefore, nutrient-coated biochar is a promising substance for enhancing agronomic performance of leafy vegetables and improving soil fertility.