• Title/Summary/Keyword: Soil Embankment

Search Result 355, Processing Time 0.031 seconds

On the Construction of Embankment of the Eui-Rim Reservoir (의림지(義林池) 축제(築堤)에 관(關)한 일고찰(一考察))

  • Chung, In Koo
    • Journal of Korean Society of Forest Science
    • /
    • v.23 no.1
    • /
    • pp.29-33
    • /
    • 1974
  • U-Reuk, a laureate musician in the days of King Jin-Heung, Silla Dynasty, built the Eui Rim Reservoir about 1,400 years ago. This was one of the oldest man-made reservoir. The embankment of the reservoir collapsed by the clumsy artificial drainage on August 19, 1972 when the heavy rainfall of 462 mm/day caused a dangerous overflow of the reservoir. The result of the study on the mystic ancient embankment techniques are as follows: 1. Sandy loam derived from the weathering of granite which is the most widely distributed rock type in the area, was used in the embankment. Large size logs (embankment core) of 30-50 cm in diameter were buried lengthwise along the embankment. 2. The six stocks of Pinus densiflora, 3 stocks of Quercus acutissima, 1 stock of Quercus variabilis and 1 stock of Popolus maximowiczii, altogether 11 stocks are identified. Forest types in the nearby area during the days of the reservoir construction seem to be includde a considerable number of Pinus densiflora, Quercus and Populus species. 3. The angle of repose of the earth materials is taken into account during the embankment. On top of the embankment double layers of clay (20-30 cm indepth) were spread and consolidated. Layer of litter of 20-40 cm in deep covered on the clay layer of the embankment completely, and another layer of clay was consolidated over the litter. Finally, a layer of stones of 10-30 cm in diameter and clay (yellow soil layer) toped the embankment. 4. At the lower part of the embankment clay layer was thicker and became thinner as it goes upwards. At every layer, soil was consolidated and burned. When embankment was completed, it was covered evenly with heavy clay, and finally it was topped with general soil. 5. The heavy clay layer on the inner slope of the embankment showed gray phenomena and litter remained raw humus layer. The clay layer functioned as rubber in the water, and raw humus layer prevented water from seepages. Thus, the embankment was solidly built in this way. 6. The ancient embankment techniques used soils conveyed from nearby area taking the angle of repose into account. Once embankment was completed, clay and litter layers were added to have a plasticity and to withstand the water pressure. 7. It is an excellent technique that the reservoir was constructed with least labor for maximum effects while the recent embankment techniques requires a large amount of labor.

  • PDF

Development of Rail-transport Operation Control in Consideration of the Stability Variation of Railway Embankment under Rainfall (강우시 사면안전성 변화를 고려한 열차운전규제 개발)

  • 신민호;김현기;김정기
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.06a
    • /
    • pp.13-22
    • /
    • 2003
  • Train speed and infiltration of rainfall causes railway embankment to be unstable and may result in failure. Therefore, the variation in the safety factor of railway embankment should be analyzed as the function of rainfall intensity, rainfall duration, and train speed and the study is accomplished using numerical analysis program. Based on unsaturated soil engineering, the variables in the shear strength function and permeability function are also defined and used for the numerical model for evaluation of railway embankments under rainfall. As a result of the study, in order to secure the safety of train under rainfall, the variation in the safety factor of railway embankment is predicted as the function of rainfall intensity, duration time and the train load as a function of train speed. It is possible to ensure the safety of train under rainfall. Thereafter, the feasibility of the rail-transport operation control with engineering basis was established.

  • PDF

Effect of the Settlement Reduction to each Geosynthetic Reinforced Pile Supported Embankments Design Condition (토목섬유보강 성토지지말뚝의 설계조건별 침하억제 효과)

  • Lee, Il-Wha;Lee, Sung-Jin;Lee, Su-Hyung;Moon, In-Ho
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1519-1524
    • /
    • 2009
  • Construction of high-speed concrete track embankments over soft ground needs many of the ground improvement techniques. Drains, surcharge loading, and geosynthetic reinforcement, have all been used to solve the settlement and embankment stability issues associated with construction on soft soils. However, when time constraints are critical to the success of the project, another measures should be considered. Especially, since the design criteria of residual settlement is limited as 30mm for concrete track embankment, it is very difficult to satisfy this allowable settlement by using the former construction method. Pile net method consist of vertical columns that are designed to transfer the load of the embankment through the soft compressible soil layer to a firm foundation and one or more layers of geosynthetic reinforcement placed between the top of the columns and the bottom of the embankment. In this paper, three cases with different embankment height and number of geosynthetic reinforcement, were studied through FEM analysis for efficient use of pile net method.

  • PDF

Behaviour of Embankment using Bottom Ash-Tire Shred Mixture (저회(Bottom Ash)와 폐타이어를 활용한 성토구조물 거동에 관한 연구)

  • Lee, Sung Jin;Shin, Min ho;Koh, Tae hoon;Hwang, Seon Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1C
    • /
    • pp.21-31
    • /
    • 2009
  • Based on the proven feasibility of bottom ash and tire shred-soil mixtures as lightweight fill materials, tire shred-bottom ash mixtures were suggested as a new lightweight fill material to replace the conventional construction material (soil) with bottom ash. Therefore, we carried out the field compaction test and performance test of large scale embankment in order to evaluate their suitability for the use of lightweight fill materials. In these tests, we could assess the settlement, earth pressure, stress-strain relation, vibration of large scale embankment which were made with tire shred-bottom ash mixture and the conventional fill material(weathered soil) respectively. The earthpressure and vibration transmission was decreased and the settlement behaviour of the 2 materials (tire shred mixture and weathered soil) was measured similarly under static/cyclic loading condition.

Application of Pile Net Method to restrain the Soft Ground settlement in Concrete Track (콘크리트궤도 침하억제를 위한 파일네트공법 적용성 검토)

  • Lee, Il-Wha;Lee, Sung-Jin;Lee, Su-Hyung;Bang, Eui-Seok;Jung, Jang-Yong
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1695-1704
    • /
    • 2008
  • The problems associated with constructing high-speed concrete track embankments over soft compressible soil has lead to the development and/or extensive use of many of the ground improvement techniques used today. Drains, surcharge loading, and geosynthetic reinforcement, have all been used to solve the settlement and embankment stability issues associated with construction on soft soils. However, when time constraints are critical to the success of the project, owners have resorted to another innovative approach. Especially, the design criteria of residual settlement is limited as 30mm for concrete track embankment, it is very difficult to satisfy this standard using the former construction method. Pile net method consist of vertical columns that are designed to transfer the load of the embankment through the soft compressible soil layer to a firm foundation and one or more layers of geosynthetic reinforcement placed between the top of the columns and the bottom of the embankment. This paper will present the guidelines for the design of pile net method to supported embankments. These guidelines were developed based on a review of current design methodologies and a parametric study of design variables using numerical modeling.

  • PDF

Instrumentations for the Behaviour Observation of the Geotextile on Marine Clayey Grounds (해성점토지반에 설치된 지오텍스타일의 거동 관측을 위한 계측)

  • 조성민;장용채
    • Journal of Korean Port Research
    • /
    • v.14 no.4
    • /
    • pp.463-473
    • /
    • 2000
  • Reinforcement with geotextiles have been used in the foundation soil to enhance the resistance of embankments to avoid failure through excessive deformation or shear in the foundation. It is improtant to know the amount of the strain and the displacement of buried geotextiles for the verification of the reinforcement behaviour. Full scale trial constructions were performed to check the deformational characteristics of the polyester(PET) mat which was used for the embankment reinforcement. Many instrumentation equipments including surface settlement plates, profile gauges and inclinometer casings were installed to observe the behaviour of the soft ground due to the soil embankment. 60 electrical resistance strain gauges and 9 vibrating wire LVDTs were installed 세 measure the deformation of the polyester mat. Results of various tests and geotextile, waterproofing and protection from the hazard environments were introduced. The proposed instrumentation method was effective for the monitoring or the geotextile behaviour. The direct attachment of electrical resistance strain gauges on the gertextile mat was able to measure small changes of the strain of geotextiles. At the end of the 5 month monitoring, 54 of 60 (93%) strain gauges and 7 of 9 (78%) displacement transducers survived all perils of the compaction impacts and the humidity. And the tensile strain of grotextiles increased as the ground displacement became larger. Though the observed strain of mats under the 3m high embankment load was less than 1%, the magnitudes of the strain according to the mat spreading method were different from each other.

  • PDF

Numerical investigation of the effect of impact on the rockfall protective embankment reinforced with geogrid

  • Mohammad Reza Abroshan;Majid Noorian-Bidgoli
    • Geomechanics and Engineering
    • /
    • v.33 no.4
    • /
    • pp.353-367
    • /
    • 2023
  • The construction of a protective embankment is a suitable strategy to stop and control high-energy rock blocks' impacts during the rockfall phenomenon. In this paper, based on the discrete element numerical method, by modeling an existing embankment reinforced with geogrid, its stability status under the impact of a rock block with two types of low and high kinetic energy, namely 2402 and 4180 kJ, respectively, has been investigated. The modeling results show that the use of geogrid has caused the displacement in the front and back of the embankment to decrease by more than 30%. In this case, the reinforced embankment has stopped the rock block earlier. The displacements obtained from the DEM modeling are compared with the displacements measured from an actual practical experiment to evaluate the results' validity. Comparison between the results shows that the displacement values are close together, while the maximum percentage error in previous studies by an analytical method and the finite element method was 76.4% and 36.6%, respectively. Therefore, the obtained results indicate the discrete numerical method's high ability compared to other numerical and analytical methods to simulate and design the geogrid-reinforced soil embankment under natural disasters such as rockfall with a minor error.

Evaluation of Lateral Flow in Soft Ground under Embankment (성토하부 연약지반의 측방유동 평가)

  • Hong, Won-Pyo;Cho, Sam-Deok;Lee, Jae-Ho;Lee, Kwang-Wu
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.10
    • /
    • pp.93-100
    • /
    • 2006
  • The lateral soil movement in soft grounds undergoing improvement with application of vertical drains is analyzed on the basis of monitoring data at three fields, in which fifty six monitoring sites are located. Based on the investigations, the criterions are suggested to predict the lateral soil movement. In order to predict the lateral soil movement in the improved soft grounds by using the dimensionless parameter R suggested by Marche & Chapuis (1974), it is desirable that the maximum lateral displacement in the soft ground below the toe of embankment should be applied to calculate R instead of the lateral displacement at the toe of embankment. The lateral soil movement may increase rapidly, if the safety factor of slope is less than 1.4 in case of high ratio of H/B (Thickness of soft ground/Embankment width) such as 1.15 or is less than 1.2 in case of low ratio of H/B such as 0.05. Also, the graph suggested by Tschebotarioff (1973), which illustrates the relationship between the maximum height of embankments and the undrained shear strength of soft grounds, can be applied to the evaluation for the possibility of the lateral soil movement due to embankments on soft grounds.

Experimental Study on the Slope Failure of Embankment (성토사면의 붕괴에 관한 실험적 연구)

  • 강우묵;이달원;지인택;조재홍
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.3
    • /
    • pp.47-62
    • /
    • 1993
  • The laboratorv model test was carried out to investigate the behavior of pore water pressure, the critical amount of rainfall for slope failure, the pattern of failure, and the variation of seepage line at the slope with the uniform material of embankment by changing the slope angles and rainfall intensities. The results were was summarised as follows : 1.At the beginning stage of rainfall, the negative pore pressure appeared at the surface of slope and the positive pore pressure at the deep parts. But, the negative one turned into the positive one as the rainfall continued and this rapidly increased about 50 to 100 minutes before the slope failure. 2.The heavier the rainfall intensity, the shorter the time, and the milder the slope, the longer the time took to reach the failure of slope. 3.As the angle of the slope became milder, the critical amount of rainfall for slope failure became greater. 4.Maximum pore water pressure was 10 to 40g/cm$^2$ at the toe of slope and 50 to 90g/cm$^2$at the deep parts. 5.In the respect of the pattern of slope failure, surface failure of slope occurred locally at the toe of slope at the A-soil and failure of slope by surface flow occurred gradually at the top part of slope at the B-soil. 6.As the rainfall continued and the saturation zone in the embankment was formed, the seepage line went rapidly up and also the time to reach the total collapse of slope took longer at the B-soil. 7.As the position of the seepage line went up and the strength parameter accordingly down, the safety factor was 2.108 at the A-soil and 2.150 at the B-soil when the slope occured toe failure. Minimum safety factor was rapidly down to 0.831 at the A-soil and to 0.936 at the B-soil when the slope collapsed totally at the top part of slope.

  • PDF

Numerical Modelling of Reinforced Soil Slopes Under Railway Load (열차하중을 받는 토목섬유 보강사면의 수치해석)

  • Jung, Young-Hoon;Lee, Il-Wha;Jang, Ki-Soo;Yoo, Seung-Joon;Lee, Su-Hyung
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.6 s.37
    • /
    • pp.753-760
    • /
    • 2006
  • This paper presents the procedure and results of the numerical modelling that was carried out to investigate the stability of reinforced soil slopes under dynamic railway load. The two-dimensional explicit dynamic finite element method (ABACUS) was used to carry out the numerical analyses. To simulate the railway load, the top surface of the embankment was excited by the uniform distributed load whose frequency and magnitude was estimated by the measured railway acceleration during train passing. The embankment displacements and geogrid axial forces were analyzed to evaluate the stability of reinforced soil slopes under the dynamic train load.