• Title/Summary/Keyword: Soil DNA extraction

Search Result 20, Processing Time 0.023 seconds

Comparison of the Phylogenetic Diversity of Humus Forest Soil Bacterial Populations via Different Direct DNA Extyaction Methods (DNA 직접추출법에 따른 산림토양 부식층 내 세균군집의 계통학적 다양성 비교)

  • Son, Hee-Seong;Han, Song-Ih;Whang, Kyung-Sook
    • Korean Journal of Microbiology
    • /
    • v.43 no.3
    • /
    • pp.210-216
    • /
    • 2007
  • The principal objective of this study was to analyze 16S rDNA-ARDRA of the humus forest soil via an improved manual method and an ISOIL kit on the basis of the UPGMA clustering of the 16S rDNA combined profile, 44 ARDRA clusters of 76 clones via the ISOIL kit method and 45 ARDRA clusters of 136 clones via the improved manual method. On the basis of the 16S rDNA sequences, 44 clones from the ARDRA clusters by the ISOIL kit were classified into 3 phyla : ${\alpha}-,\;{\beta}-,\;{\gamma}-,\;{\delta}-Proteobacteria$, Acidobacteria and Actinobacteria. Using the improved manual method, the specimens were classified into 6 phyla : the ${\alpha}-,\;{\beta}-,\;{\gamma}-,\;{\delta}-Proteobacteria$, Acidobacteria, Bacteroides, Verrucomicrobia, Planctomycetes and Gemmatomonadetes. As a result, the modified manual method indicated greater phylogenetic diversity than was detected by the ISOIL kit. Approximately 40 percent of the total clones were identified as ${\alpha}-Proteobacteria$ and 30 percent of the total clones were ${\gamma}-Proteobacteria$ and assigned to dominant phylogenetic groups using the ISOIL kit. Using the modified manual method, 41 percent of the total clones were identified as Acidobacteria and 28 percent of total clones were identified as ${\alpha}-proteobacteria$ and assigned to dominant phylogenetic groups.

Bacterial Community and Diversity from the Watermelon Cultivated Soils through Next Generation Sequencing Approach

  • Adhikari, Mahesh;Kim, Sang Woo;Kim, Hyun Seung;Kim, Ki Young;Park, Hyo Bin;Kim, Ki Jung;Lee, Youn Su
    • The Plant Pathology Journal
    • /
    • v.37 no.6
    • /
    • pp.521-532
    • /
    • 2021
  • Knowledge and better understanding of functions of the microbial community are pivotal for crop management. This study was conducted to study bacterial structures including Acidovorax species community structures and diversity from the watermelon cultivated soils in different regions of South Korea. In this study, soil samples were collected from watermelon cultivation areas from various places of South Korea and microbiome analysis was performed to analyze bacterial communities including Acidovorax species community. Next generation sequencing (NGS) was performed by extracting genomic DNA from 92 soil samples from 8 different provinces using a fast genomic DNA extraction kit. NGS data analysis results revealed that, total, 39,367 operational taxonomic unit (OTU), were obtained. NGS data results revealed that, most dominant phylum in all the soil samples was Proteobacteria (37.3%). In addition, most abundant genus was Acidobacterium (1.8%) in all the samples. In order to analyze species diversity among the collected soil samples, OTUs, community diversity, and Shannon index were measured. Shannon (9.297) and inverse Simpson (0.996) were found to have the highest diversity scores in the greenhouse soil sample of Gyeonggi-do province (GG4). Results from NGS sequencing suggest that, most of the soil samples consists of similar trend of bacterial community and diversity. Environmental factors play a key role in shaping the bacterial community and diversity. In order to address this statement, further correlation analysis between soil physical and chemical parameters with dominant bacterial community will be carried out to observe their interactions.

Development of Microfluidic Chip for Enrichment and DNA Extraction of Bacteria Using Concanavalin A Coated Magnetic Particles (Concanavalin A가 코팅 된 자성 입자를 이용한 미생물 농축 및 유전자 추출 칩 개발)

  • Kwon, Kirok;Gwak, Hogyeong;Hyun, Kyung-A;Jung, Hyo-Il
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.237-241
    • /
    • 2018
  • The real-time enrichment and detection of pathogens are serious issues and rapidly evolving field of research because of the ability of these pathogens to cause infectious diseases. In general, bacterial detection is accomplished by conventional colony counting or by polymerase chain reaction (PCR) after DNA extraction. As colony counting requires considerable time to cultivate, PCR is an attractive method for rapid detection. A small number of pathogens can cause diseases. Hence, a pretreatment process, such as enrichment is essential for detecting bacteria in an actual environment. Thus, in this study, we developed a microfluidic chip capable of performing rapid enrichment of bacteria and the extraction of their genes. A lectin, i.e., Concanavalin A (ConA), which shows binding affinity to the surface of most bacteria, was coated on the surface of magnetic particles to nonspecifically capture bacteria. It was subsequently concentrated through magnetic forces in a microfluidic channel. To lyse the captured bacteria, magnetic particles were irradiated by a wavelength of 532nm. The photo-thermal effect on the particles was sufficient for extracting DNA, which was consequently utilized for the identification of bacteria. Our device will help monitor the existence of bacteria in various environmental situations such as water, air, and soil.

Monitoring 4-Chlorobiphenyl-Degrading Bacteria in Soil Microcosms by Competitive Quantitative PCR

  • Lee, Soo-Youn;Song, Min-Sup;You, Kyung-Man;Kim, Bae-Hoon;Bang, Seong-Ho;Lee, In-Soo;Kim, Chi-Kyung;Park, Yong-Keun
    • Journal of Microbiology
    • /
    • v.40 no.4
    • /
    • pp.274-281
    • /
    • 2002
  • The competitive quantitative PCR method targeting pcbC gene was developed for monitoring 4-chlorobiphenyl(4CB)-degrading bacteria, Pseudomonas sp. strain DJ-12, in soil microcosms. The method involves extraction of DNA from soil contaminated with 4CB, PCR amplification of a pcbC gene fragment from the introduced strain with a set of strain-specific primers, and quantification of the elec-trophoresed PCR product by densitometry. To test the adequacy of the method, Pseudomonas sp. strain DJ-12 was introduced into both contaminated and non-contaminated soil microcosms amended with 4CB. Pseudomonas sp. strain DJ-12 was monitored and quantified by a competitive quantitative PCR in comparison with 4CB degradation and the result was compared to those obtained by using the conventional cultivation method. We successfully detected and monitored 4CB-degrading bacteria in each microcosm and found a significant linear relationship between the number of 4CB-degrading bacteria and the capacity for 4CB biodegradation. The results of DNA spiking and cell-spreading experiments suggest that this competitive quantitative PCR method targeting the pcbC gene for monitoring 4CB- degrading bacteria appears to be rapid, sensitive and more suitable than the microbiological approach in estimating the capacity of 4CB biodegradation in environmental samples.

DNA Toposiomerase I Inhibitor by Streptomyces sp. 7489 (방선균주 7489가 생산하는 DNA Topoisomerase I 저해제에 관한 연구)

  • Lee, Dong-Sun;Ha, Sang-Chul;Lee, Sang-Yong;Kim, Jong-Guk;Hong, Soon-Duck
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.1
    • /
    • pp.101-104
    • /
    • 1996
  • During the screening of inhibitor of DNA topoisomerase I from microbial secondary metabolites, Streptomyces melanosporofaciens 7489 which was capable of producing high level of inhibitor was selected from soil. The active compound (7489-1) was purified from the culture broth by solvent extraction, silica gel column chromatography and HPLC. The inhibitor was identified as dibutyl phthalate by spectroscopic methods of UV, $^{1}H$-NMR, $^{13}C$-NMR, DEPT and EI-MS. 7489-1 showed a strong inhibitory activity against topoisomerase I with 10 ${\mu}$M of $IC_{50}$ value.

  • PDF

Analysis of Microbial Communities in Animal Carcass Disposal Soils (가축사체 매몰지 토양의 미생물 군집 분석)

  • Park, Jeong-Ann;Choi, Nag-Choul;Kim, Song-Bae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.7
    • /
    • pp.503-508
    • /
    • 2013
  • The aim of this study was to investigate the microbial communities in animal carcass disposal soils to examine the possible threat of pathogens from leachate. DNA extraction was performed for the soils in three carcass disposal sites located in Gyeonggi-do, Korea, and then 16S rRNA pyrosequencing was conducted to identify the microbial communities. Results indicate that, according to phylum classification, Proteobacteria (100%) was identified in soil A, Actinobacteria (66.4%) > Proteobacteria (31.1%) > Bacteriodetes (2.1%) > Acidobacteria (0.3%) in soil B, and Actinobacteria (63.1%) > Proteobacteria (36.9%) in soil C. According to genus classification, Pseudomonas was dominant in soil A (98%), Arthrobacter in soil B (68%) and C (61%). There were no detections of pathogens such as Salmonella, Campylobacter and Clostridium perfringens. However, high concentration of Ralstonia pickettii causing bacteremia was observed. Although carcass disposal soils examined in this study were not highly contaminated with pathogens, further monitoring is still needed to examine the potential threat of pathogens in leachate derived from carcass disposal sites.

Isolation of N-Iauroyl Tyrosine Antibiotic in E. coli Carrying N-acyl Amino Acid Synthase Gene from Environmental DNA in Korean Soils (한국 토양 환경유래의 N-acyl amino acid synthase 유전자에 의한 대장균 내 항생제 N-lauroyl tyrosine 생산)

  • Yeo, Yun-Soo;Lim, Yoon-Ho;Kim, Jeong-Bong;Yang, Jung-Mo;Lee, Chang-Muk;Kim, Soo-Jin;Park, Min-Seon;Koo, Bon-Sung;Yoon, Sang-Hong
    • Applied Biological Chemistry
    • /
    • v.50 no.4
    • /
    • pp.262-267
    • /
    • 2007
  • To access the natural product antibiotics produced by uncultured microorganisms, six cosmid libraries of DNA extracted directly from soil samples (environmental DNA, eDNA) were constructed and screened for the production of antibacterial active molecules. Of the approximately 60,000 clones screened, one antibacterial clone (YS92B) was detected. Ethyl acetate extracts of clone YS92B showed antibacterial activity against various pathogenic bacteria (Listeria monocytogenes, Bacillus subtilis, Pseudomonas syringae, Xanthomonas campestris pv. oryzae, Staphylococcus epidemis). Active constituents from cultures of YS92B were isolated and purified using a bioassay-guided fractionation against B. subtilis through a series of procedures (ethyl acetate extraction, Sephadex LH20 column chromatography, High Performance Liquid Chromatography). NMR (Nuclear Magnetic Resonance) spectral analysis of a major antibacterial active YS92B-VII indicated that it is a lauric acid linked to tyrosine. This report describes the characterization of antibacterially active long chain N-acyl derivatives of tyrosine that are produced by eDNA clones hosted in Escherichia coli from Korean soils.

Isolation, Identification and Optimal Culture Conditions of Streptomyces albidoflavus C247 Producing Antifungal Agents against Rhizoctonia solani AG2-2

  • Islam, Rezuanul;Jeong, Yong-Tae;Ryu, Yeon-Ju;Song, Chi-Hyun;Lee, Yong-Se
    • Mycobiology
    • /
    • v.37 no.2
    • /
    • pp.114-120
    • /
    • 2009
  • Streptomyces albidoflavus C247 was isolated from the soil of the Gyeongsan golf course in Korea. Physiological, biochemical and 16S rDNA gene sequence analysis strongly suggested that the isolate belonged to Streptomyces albidoflavus. Preliminary screening revealed that the isolate was active against fungi and bacteria. Self-directing optimization was employed to determine the best combination of parameters such as carbon and nitrogen source, pH and temperature. Nutritional and culture conditions for the production of antibiotics by this organism under shake-flask conditions were also optimized. Maltose (5%) and soytone (5%) were found to be the best carbon and nitrogen sources for the production of antibiotics by S. albidoflavus C247. Additionally, 62.89% mycelial growth inhibition was achieved when the organism was cultured at $30^{\circ}C$ and pH 6.5. Ethyl acetate (EtOAc) was the best extraction solvent for the isolation of the antibiotics, and 100 ${mu}$/ml of EtOAc extract was found to inhibit 60.27% of the mycelial growth of Rhizoctonia solani AG2-2(IV) when the poison plate diffusion method was conducted.

Temperature dependent 2,3-dihydroxybenzoic acid production in Acinetobacter sp. B-W (Acinetobacter sp. B-W의 온도 의존적 2,3-dihydroxybenzoic acid 생산)

  • Kim, Kyoung-Ja;Lee, Jae-Hun;Yang, Yong-Joon
    • Korean Journal of Microbiology
    • /
    • v.51 no.3
    • /
    • pp.249-255
    • /
    • 2015
  • A soil microorganism producing iron chelator (siderophore) under low iron stress (up to $2{\mu}M$ of iron) was identified as Acinetobacter sp. B-W by 16S rDNA sequence analysis, biochemical-, physiological tests and morphological analysis using electron microscope. Catechol nature of siderophore was detected by Arnow test. Although optimal cell growth was identified at $36^{\circ}C$ in iron-limited media, significant quantities of siderophore were produced only at $28^{\circ}C$. Biosynthesis of siderophore was strongly inhibited by growth at $36^{\circ}C$. Production of siderophore was completely inhibited by $10{\mu}M\;FeCl_3$. Iron chelator produced from Acinetobacter sp. B-W was purified from supernatant using butanol extraction, Sephadex LH-20 column chromatography and HPLC. Purified sideropore was identified as 2,3-dihydroxybenzoic acid by HPLC, TLC and IR analysis.

Conservation and Scientific Analysis of Human Bone Excavated in Sabi Period of Baekje from Eungpyeong-ri, Buyeo (부여 응평리 출토 백제 사비기 인골 보존처리 및 과학적 분석)

  • KIM, Mijeong;LEE, Yunseop;CHO, Eunmin;PARK, Sujin;MOON, Minseong
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.1
    • /
    • pp.305-321
    • /
    • 2022
  • The stone chamber tomb in Eungpyeong-ri, Buyeo, is a joint tomb that contains the bodies of two individuals. This paper investigates the relationship between the buried persons and the characteristics of the stone chamber tomb. Based on the geographical location, relics, and the excavated human bones, it was determined that the tomb was built during the Sabi Period of the Baekje Dynasty and that the buried individuals were most probably residents of high stature or government officials. To study the excavated bones, the remains were carefully collected and conservation was carried out. Before collecting samples from the human bones for the analytical research, the results of near-infrared analysis were used to collect the samples for the isotope analysis and DNA analysis. The most important issue when handling the excavation site was the reinforcing agent and the concentration of the agent used. In situations like this, Paraloid B-72 is the most suitable agent. When the shape of human bones was difficult to distinguish from the soil, conservation was performed using X-ray and CT imaging data. The same chemical used for the reinforcement of the site was used to complete a minimum level of conservation to the surface areas where the conservation treatment of removing foreign substances, the reinforcement areas, and bonded areas were carried out. The collagen yield from the sample obtained at selected position was 3.8% to 6.1%. The results of analyzing the stable isotopes of carbon and nitrogen found in the extracted collagen showed that the stable isotope ratios came out to δ13C -18.3‰±0.1‰, -19.0‰±0.1‰ for EBW and δ15N 10.7‰±0.5‰, 10.6‰±0.1‰ for EBE. It is believed the two individuals consumed small amounts of minor cereals, mainly from C3 plants, and protein was obtained from eating terrestrial animals. What's more, the deviations in data obtained from the two individuals were so small that it could be inferred that the individuals ate similar foods. Considering the preservation state of the sample, amplifying DNA for the DNA analysis would have been very difficult since the amount of surviving DNA was so deficient. For DNA analysis, it is anticipated that the results could be derived by applying improved extraction methods that will be developed in the future. In this research, any association between scientific analysis(DNA and stable isotope ratio) and near-infrared spectroscopy was difficult to establish. Further research is needed on the utilization of near-infrared analysis for gathering samples from human bones.