• Title/Summary/Keyword: Soil Classification

Search Result 600, Processing Time 0.026 seconds

Development of Stream Cover Classification Model Using SVM Algorithm based on Drone Remote Sensing (드론원격탐사 기반 SVM 알고리즘을 활용한 하천 피복 분류 모델 개발)

  • Jeong, Kyeong-So;Go, Seong-Hwan;Lee, Kyeong-Kyu;Park, Jong-Hwa
    • Journal of Korean Society of Rural Planning
    • /
    • v.30 no.1
    • /
    • pp.57-66
    • /
    • 2024
  • This study aimed to develop a precise vegetation cover classification model for small streams using the combination of drone remote sensing and support vector machine (SVM) techniques. The chosen study area was the Idong stream, nestled within Geosan-gun, Chunbuk, South Korea. The initial stage involved image acquisition through a fixed-wing drone named ebee. This drone carried two sensors: the S.O.D.A visible camera for capturing detailed visuals and the Sequoia+ multispectral sensor for gathering rich spectral data. The survey meticulously captured the stream's features on August 18, 2023. Leveraging the multispectral images, a range of vegetation indices were calculated. These included the widely used normalized difference vegetation index (NDVI), the soil-adjusted vegetation index (SAVI) that factors in soil background, and the normalized difference water index (NDWI) for identifying water bodies. The third stage saw the development of an SVM model based on the calculated vegetation indices. The RBF kernel was chosen as the SVM algorithm, and optimal values for the cost (C) and gamma hyperparameters were determined. The results are as follows: (a) High-Resolution Imaging: The drone-based image acquisition delivered results, providing high-resolution images (1 cm/pixel) of the Idong stream. These detailed visuals effectively captured the stream's morphology, including its width, variations in the streambed, and the intricate vegetation cover patterns adorning the stream banks and bed. (b) Vegetation Insights through Indices: The calculated vegetation indices revealed distinct spatial patterns in vegetation cover and moisture content. NDVI emerged as the strongest indicator of vegetation cover, while SAVI and NDWI provided insights into moisture variations. (c) Accurate Classification with SVM: The SVM model, fueled by the combination of NDVI, SAVI, and NDWI, achieved an outstanding accuracy of 0.903, which was calculated based on the confusion matrix. This performance translated to precise classification of vegetation, soil, and water within the stream area. The study's findings demonstrate the effectiveness of drone remote sensing and SVM techniques in developing accurate vegetation cover classification models for small streams. These models hold immense potential for various applications, including stream monitoring, informed management practices, and effective stream restoration efforts. By incorporating images and additional details about the specific drone and sensors technology, we can gain a deeper understanding of small streams and develop effective strategies for stream protection and management.

The Classification and Interpretation of Korean Soils Derived from Sedimentary Rocks using Multidimensional Scaling (다차원척도법을 이용한 우리나라 퇴적암 유래토양의 분류 및 해설)

  • Sonn, Yeon-Kyu;Seo, Myung-Chul;Park, Chan-Won;Hyun, Byung-Keun;Zhang, Yong-Seon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.6
    • /
    • pp.387-392
    • /
    • 2008
  • It is very important to characterize five major properties of topography, drainage class, soil texture, available soil depth, and gravel content for soil survey. We used multidimensional scaling method for analyzing five major properties for the soils originated from sedimentary rocks to understand their relationships. We simplified 5 major characteristics on soils derived from sedimentary rocks. That is, topographic factor was 15 to 9, soil texture was 32 to 6, drainage class was 6 to 5, available depth was 4, and gravel content was 3. For the viewpoint of eigenvector, from dimension 2, 3 to dimension 1, 4, mountain soils and more fine soils dominated. By eigenvalue, there was no tendency, but in details, was some tendency between small groups. Like this, closely observe exceptional distribution of soils, we need improved intra-group homogeneity based on weight control of soil factor, addition and subtraction of soil factors. Also, we carefully analyzed soil characteristics involved intra-group, then we need reconsideration of past classification units.

A Study on Classification and Ordination of Adenophora racemosa Population (외대잔대(Adenophora racemosa J.Lee & S.Lee) 개체군의 classification과 ordination 분석)

  • Ji, Yunui;Moon, Byeong Cheol;Lee, A-Yeong;Yoon, Taesook;Song, Hokyung;Choo, Byung Kil;Kim, Ho Kyoung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.12 no.6
    • /
    • pp.86-98
    • /
    • 2009
  • This study was carried out to investigate vegetation structure and soil properties of Adenophora racemosa population distributed in Jeombongsan, Seoraksan, Odaesan and Dutasan in Gangwon-do, Korea. From August 2007 until September 2009, $2m{\times}2m$ quadrate was established in native area of Adenophora racemosa in order to record a dominants and coverage, and soil factors at 22 sites. It was found that the altitude in the distributed areas for Angelica gigas population was 800 m or more. Adenophora racemosa population was classified into Rhododendron mucronulatum dominant population, Geranium var. hirsutum dominant population, Caret siderosticta dominant population and Aruncus dioicus var. kamtschaticus dominant population. In the site of study, soil pH, electrical conductivity, soil organic matter, available phosphorous, and exchangeable potassium, exchangeable calcium, exchangeable magnesium, exchangeable sodium concentration and total nitrogen were ranged from 5.0~7.1, 0.06~0.65dS/m, 0.96~8.94%, 12.3~32.8mg/kg, 0.12~0.89cmol+/kg, 0.34~10.08cmol+/kg, 0.1~l.4cmol+/kg, 0.02~0.29cmol+/kg and 0~8.4% respectively. According to the results of DCCA, Adenophora racemosa population were distributed in the high available phosphorous and exchangeable potassium, and Rhododendron mucronulatum dominant population was situated on low available potassium and high slope degree, Geranium var. hirsutum dominant population was high altitude, electrical conductivity and exchange magnesium, and Carex siderosticta dominant population and Aruncus dioicus var. kamtschaticus were distributed on high total nitrogen, organic matter, available phosphorous.

Classification of tree species using high-resolution QuickBird-2 satellite images in the valley of Ui-dong in Bukhansan National Park

  • Choi, Hye-Mi;Yang, Keum-Chul
    • Journal of Ecology and Environment
    • /
    • v.35 no.2
    • /
    • pp.91-98
    • /
    • 2012
  • This study was performed in order to suggest the possibility of tree species classification using high-resolution QuickBird-2 images spectral characteristics comparison(digital numbers [DNs]) of tree species, tree species classification, and accuracy verification. In October 2010, the tree species of three conifers and eight broad-leaved trees were examined in the areas studied. The spectral characteristics of each species were observed, and the study area was classified by image classification. The results were as follows: Panchromatic and multi-spectral band 4 was found to be useful for tree species classification. DNs values of conifers were lower than broad-leaved trees. Vegetation indices such as normalized difference vegetation index (NDVI), soil brightness index (SBI), green vegetation index (GVI) and Biband showed similar patterns to band 4 and panchromatic (PAN); Tukey's multiple comparison test was significant among tree species. However, tree species within the same genus, such as $Pinus$ $densiflora-P.$ $rigida$ and $Quercus$ $mongolica-Q.$ $serrata$, showed similar DNs patterns and, therefore, supervised classification results were difficult to distinguish within the same genus; Random selection of validation pixels showed an overall classification accuracy of 74.1% and Kappa coefficient was 70.6%. The classification accuracy of $Pterocarya$ $stenoptera$, 89.5%, was found to be the highest. The classification accuracy of broad-leaved trees was lower than expected, ranging from 47.9% to 88.9%. $P.$ $densiflora-P.$ $rigida$ and $Q.$ $mongolica-Q.$ $serrata$ were classified as the same species because they did not show significant differences in terms of spectral patterns.

Soil Moisture Estimation Using CART Algorithm and Ancillary Data (CART기법과 보조자료를 이용한 토양수분 추정)

  • Kim, Gwang-Seob;Park, Han-Gyun
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.7
    • /
    • pp.597-608
    • /
    • 2010
  • In this study, a method for soil moisture estimation was proposed to obtain the nationwide soil moisture distribution map using on-site soil moisture observations, rainfall, surface temperature, NDVI, land cover, effective soil depth, and CART (Classification And Regression Tree) algorithm. The method was applied to the Yong-dam dam basin since the soil moisture data (4 sites) of the basin were reliable. Soil moisture observations of 3 sites (Bu-gui, San-jeon, Cheon-cheon2) were used for training the algorithm and 1 site (Gye-buk2) was used for the algorithm validation. The correlation coefficient between the observed and estimated data of soil moisture in the validation sites is about 0.737. Results show that even though there are limitations of the lack of reliable soil moisture observation for various land use, soil type, and topographic conditions, the soil moisture estimation method using ancillary data and CART algorithm can be a reasonable approach since the algorithm provided a fairly good estimation of soil moisture distribution for the study area.

Automatic 3D soil model generation for southern part of the European side of Istanbul based on GIS database

  • Sisman, Rafet;Sahin, Abdurrahman;Hori, Muneo
    • Geomechanics and Engineering
    • /
    • v.13 no.6
    • /
    • pp.893-906
    • /
    • 2017
  • Automatic large scale soil model generation is very critical stage for earthquake hazard simulation of urban areas. Manual model development may cause some data losses and may not be effective when there are too many data from different soil observations in a wide area. Geographic information systems (GIS) for storing and analyzing spatial data help scientists to generate better models automatically. Although the original soil observations were limited to soil profile data, the recent developments in mapping technology, interpolation methods, and remote sensing have provided advanced soil model developments. Together with advanced computational technology, it is possible to handle much larger volumes of data. The scientists may solve difficult problems of describing the spatial variation of soil. In this study, an algorithm is proposed for automatic three dimensional soil and velocity model development of southern part of the European side of Istanbul next to Sea of Marmara based on GIS data. In the proposed algorithm, firstly bedrock surface is generated from integration of geological and geophysical measurements. Then, layer surface contacts are integrated with data gathered in vertical borings, and interpolations are interpreted on sections between the borings automatically. Three dimensional underground geology model is prepared using boring data, geologic cross sections and formation base contours drawn in the light of these data. During the preparation of the model, classification studies are made based on formation models. Then, 3D velocity models are developed by using geophysical measurements such as refraction-microtremor, array microtremor and PS logging. The soil and velocity models are integrated and final soil model is obtained. All stages of this algorithm are carried out automatically in the selected urban area. The system directly reads the GIS soil data in the selected part of urban area and 3D soil model is automatically developed for large scale earthquake hazard simulation studies.

Unconfined Compressive Strength Characteristics of E.S.B. Mixed Soil Based on Soil Compactness and Curing Period (토양의 다짐도와 재령기간에 따른 E.S.B. 혼합토의 일축압축강도특성)

  • Oh, Sewook;Kim, Hongseok;Bang, Seongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.5
    • /
    • pp.47-55
    • /
    • 2019
  • This study aims to provide basic data for soil packaging differing in accordance with the strength characteristics of mixed soil, using E.S.B. (Eco Soil Binder), an eco-friendly hardening agent, based on the type of soil. The soil used in this study is weathered granite soil readily collected in and around Korea, and is classified into SW, SP and SC according to soil classification systems. The test piece for the unconfined compressive strength test has dimensions of 50 mm in diameter and 100 mm in height, with the mix ratio of E.S.B. proportional to the weight of mixed soil changed from 5% to 10%, 15%, 20%, 25%, and 30%, where compactness of 90% and 100% were applied according to each condition to analyze the unconfined compressive strength characteristics at material ages of 3, 7, and 28 days. Also, the ratio of soil packaging standard strength and unconfined compressive strength was calculated to determine the optimal E.S.B. mix ratio, whereby the field applicability of the unconfined compressive strength using the estimation equation of ACI209R was evaluated.

Classification of the Damaged Areas in the DMZ (Demilitarized zone) by Location Environments (입지 환경 인자를 이용한 DMZ 남측 철책선 주변 훼손지 유형화)

  • Bak, Gi-Ppeum;Kim, Sang-Jun;Lee, Ah-Young;Kim, Dong-Hak;Yu, Seung-Bong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.2
    • /
    • pp.71-84
    • /
    • 2021
  • Restoration of DMZ has come up with the discussion on the peaceful use of the DMZ and the conservation plan of the army. In this study, we aim to identify soil characteristics of 108 sites to figure out environmental conditions around the iron fence of DMZ where vegetation has been removed repeatedly. Based on the soil characteristics and climate variables, hierarchy clustering was performed to categorize sites. As a result, we categorized 108 sites into 4 types: middle elevation region, lowland, East coast lowland, other areas. Group of 'other area' is only high in nutrient and clay proportion. Others are in igneous rock and metamorphic rocks with a high proportion of sand and lower nutrients than the optimum range of growth in Korean forest soil. The middle elevation region has a high altitude, low temperature. The east coast lowland has a high temperature in January and low precipitation. The lowland has a low altitude and high temperature. This category provides the environmental condition around the DMZ fence and can be used to select plants for restoration. The restoration project around the DMZ iron fence should satisfy the security of military plans, which means that functional restoration is prior to ecological restoration such as vegetation management under a power line. Additionally, improvement of soil quality and surface stability through restoration projects is required to enhance the resilience of the ecosystem in DMZ.

Seed Germination of Surface Soil for Restoration of Disturbance Place - Bare Land and abandoned Field, Yesan-gun, Korea - (교란지 복구를 위한 표토의 매토종자 발아특성 - 예산군의 나지와 묵밭 토양-)

  • Kang, Hee-Kyoung;Cho, Nam-Kyoung;Song, Hong-Seon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.20 no.6
    • /
    • pp.79-92
    • /
    • 2017
  • To offer the basic data of vegetation restoration by buried seed of soil, this research was conducted at bare land and abandoned field in Yesan-gun. Germination plants of buried seed were consisted of 40 taxa (37 species, 3 varieties) in bare land, and 41 taxa (37 species, 4 varieties) in abandoned field. Classification of germination plants by family was the most in Gramineae, and emergent frequency of plots was the highest of Digitaria ciliaris. The soil depth of the most plants appearance was 2~5cm in bare land and 5~10cm in abandoned field, and the soil depth of the most population appearance was 0~2cm both in bare land and in abandoned field. Population number of buried seed germination was decreased according to soil depth. Crepidiastrum sonchifolium was a plant that population number of buried seed germination is the most. Similarity index was 0.33 in aerial part plants and buried seed plants, and 0.55 in bare land and abandoned field.

Soil Erosion Risk Assessment by Soil Characteristics and Landuse in the Upper Nakdong River Basin (토양 특성 및 토지이용에 따른 낙동강 상류지역 토양침식위험성 평가)

  • Park, Chan-Won;Sonn, Yeon-Kyu;Hyun, Byung-Keun;Song, Kwan-Cheol;Chun, Hyun-Chung;Cho, Hyun-Jun;Moon, Yong Hee;Yun, Sun-Gang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.890-896
    • /
    • 2012
  • This study was conducted to evaluate soil erosion risk with a standard unit watershed in the upper Upper Nakdong River Basin according to soil characteristics and landuse using the spatial soil erosion map. The study area is $3,605.6km^2$, which consists of 2 subbasins, 35 standard unit watersheds (Andong basin 18, Imha basin 17). As a evaluation of soil erosion potential using the spatial soil erosion map, total annual soil loss and soil loss per area estimated $2,013{\times}10^3Mg\;yr^{-1}$ (Andong basin 979, Imha basin 1,034) and $6.1Mg\;ha^{-1}yr^{-1}$ (Andong basin 6.0, Imha basin 5.2), respectively. 54.2% of soil loss was originated from Arable land (Andong basin 49.0%, Imha basin 59.0%), and the area of regions, graded as higher "Moderate" for annual soil loss, was $201.7km^2$ (Andong basin 84.9, Imha basin 116.8). Average soil loss per area of unit watersheds by classification according to soil dominant parent material types ranked "Sedimentary rock group" > "Mixed group" > "Metamorphic rock group" > "Igneous rock group". In conclusion, the results of this study inform that the classification of soil parent material type would be effective for soil erosion analysis and interpretation in the Upper Nakdong River Basin.