• Title/Summary/Keyword: Soil Analysis

Search Result 8,332, Processing Time 0.027 seconds

Seismic analysis of 3-D two adjacent buildings connected by viscous dampers with effect of underneath different soil kinds

  • Farghaly, Ahmed Abdelraheem
    • Smart Structures and Systems
    • /
    • v.15 no.5
    • /
    • pp.1293-1309
    • /
    • 2015
  • 3D two adjacent buildings with different heights founded in different kinds of soil connected with viscous dampers groups, with especial arrangement in plane, were investigated. Soil structure interaction for three different kinds of soil (stiff, medium and soft) were modeled as 3D Winkler model to give the realistic behavior of adjacent buildings connected with viscous dampers under various earthquake excitations taking in the account the effect of different kinds of soil beneath the buildings, using SAP2000n to model the whole system. A range of soil properties and soil damping characteristics are chosen which gives broad picture of connected structures system behavior resulted from the influence soil-structure interaction. Its conclusion that the response of connected structures system founded on soft soil are more critical than those founded on stiff soil. The behavior of connected structures is different from those with fixed base bigger by nearly 20%, and the efficiency of viscous dampers connecting the two adjacent buildings is reduced by nearly 25% less than those founded on stiff soil.

Stability Analysis of Soil Nailing System with Wall Displacements (벽체변위를 고려한 Soil Nailing공법의 안정해석)

  • Kim, Hong-Taek;Gang, In-Gyu;Seong, An-Je
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.09a
    • /
    • pp.119-122
    • /
    • 1994
  • An analytical procedure is described to estimate the mobilized tensile forces along the effective lengths of nails. Based on the horizontal focing displacements of a nailed-soil wall experiencing outward tilt about the toe with granular soil deposit, the variation of nail-soil friction coefficient is modeled. Also, the method of overall stability analysis of a nailed-soil wall is presented using the Morgenstem-Price limit-equilibrium slice method. The results predicted by the developed procedure are compared with test measurements. The comparisons show in general good agreement.

  • PDF

Investigation and Analysis of Soil Contamination at Industrial Site (산업공장 주변 토양오염도 조사 분석)

  • 정하익;김상근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.99-102
    • /
    • 2000
  • There has been a steady increase in contaminated ground at municipal and industrial site. In this study, investigation and analysis on soil contamination at industrial site was carried out. Testing contaminated soils were sampled at this site. As a result of this study, the concentration of soil was investigated, and measured concentration was compared with related concentration criteria.

  • PDF

Soil Investigation Strategies for Soil Risk Assessment (토양위해성평가를 위한 합리적 토양조사방안 연구)

  • Jeong, Seung-Woo;An, Youn-Joo
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.1
    • /
    • pp.36-43
    • /
    • 2007
  • The objectives of soil investigation in risk assessment of contaminated sites are to characterize the level and area of contamination, and provide the important physical and chemical properties of contaminated sites for later exposure assessment. This study suggests two soil investigation strategies to be considered in the soil risk assessment in Korea. First, soil investigation for characterizing soil properties is additionally required to the current investigation method that has focused on chemical analysis. Second, application of statistical concepts to soil investigation plan and soil data analysis are required for confidential decison-making on contamination and determining the exposure soil concentration. This study provides a practical soil investigation strategy to involve the current Korean soil analysis guidance with the minimum sample number required for satisfying statistical limits.

Assessment of Soil Washing Efficiency for Arsenic Contaminated Site Adjacent to Jang Hang Refinery (장항제련소 주변 비소오염토양의 특성분석에 따른 토양세척 처리효율 평가)

  • Moon, So-Young;Oh, Min-Ah;Jung, Jun-Kyo;Choi, Sang-Il;Lee, Jai-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.1
    • /
    • pp.71-81
    • /
    • 2011
  • Cause of contamination in the study area nearby Jang Hang Refinery is dust scattering in refinery stack, and soil washing treatment is one of the proper technologies for soil remediation in this area. Site conditions frequently limit the selection of a treatment process. A treatment technology may be eliminated based on the soil classification or physicochemical characteristics of soil. This study was assessed the soil washing efficiency by conducting of soil characteristic analysis in the vicinity of Jang Hang Refinery Stack within a 2 km radius. Also, it was decided about remedial range with comparative analysis of As in soil by Korean Standard Test Method before/after revision, whereupon As concentration in soil showed a increasing tendency after revision. As a result, the soil washing using the size separation of soil was determined through identifying of As species in the soil. In this site, only particle size distribution and water content of soil can provide the initial means of screening for the potential use of soil washing.

Stability Analysis for a Slope Reinforced with Pressure Grouted Soil Nails (가압식 그라우팅 쏘일네일 보강사면의 거동분석)

  • Kim, Yong-Min;Yun, Yeo-Hyeok;Lee, Sung-June;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.12
    • /
    • pp.39-52
    • /
    • 2011
  • This paper describes a new numerical analysis technique in stability analysis for a slope reinforced with pressure grouted soil nails. The installing effect of pressure grouted soil nails can be simulated in this method. Shear strength reduction method associated with finite element method is used for slope stability analysis. Factors of safety for a slope reinforced with pressure grouted soil nails are compared with those for a natural slope and a slope reinforced with gravity grouted soil nails in order to investigate their reinforcing effects. More than 50% increase in the factor of safety is obtained when the slope is reinforced with pressure grouted soil nails compared to the one with gravity grouted soil nails. The reinforcing effects of pressure grouted soil nails become obvious with increase in their length. The reinforcing mechanism of the pressure grouted soil nails for the slope stability can be explained by the slope failure surface expanding gradually toward the backfill. The increased stability of the slope reinforced with pressure grouted soil nails results mainly from their improved pull-out resistance.

Assessment on the Transition of Arsenic and Heavy Metal from Soil to Plant according to Stabilization Process using Limestone and Steelmaking Slag (석회석과 제강슬래그를 이용한 오염토양 안정화에 따른 비소 및 중금속의 식물체 전이도 평가)

  • Koh, Il-Ha;Lee, Sang-Hwan;Lee, Won-Seok;Chang, Yoon-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.7
    • /
    • pp.63-72
    • /
    • 2013
  • This study estimated stabilization efficiency of As and heavy metal contaminated agricultural soil in abandoned mine through pot experiment. Also contaminants uptake of plant (lettuce) was compared as function of amendment (limestone, steelmaking slag and the mixture of these) addition. In soil solution analysis, concentration of contaminants in soil solutions which added limestone or steelmaking slag were lower than that of the mixture. Especially in As analysis, concentration with 5% (wt) addition of steelmaking slag showed the lowest value among those with other amendments. This seems that As stabilization happens through Fe adsorption during precipitation of Fe by pH increasing. Leachability of As in stabilized soil by TCLP was represented similar result with soil solution analysis. However leachability of heavy metals in stabilized soil was similar with that of non-stabilized soil due to dissolution of alkali precipitant by weak acid. Contaminants uptake rate by plant was also lower when limestone or steelmaking slag was used. However this study revealed that concentration of contaminants in soil solution didn't affect to the uptake rate of plant directly. Because lower $R^2$ (coefficient of determination) was represented in linear regression analysis between soil solution and plant.

A Study on Interaction between Soil and Nail using SW Model (Strain Wedge Model을 이용한 지반-네일의 상호작용에 대한 연구)

  • 김홍택;강인규;김진홍;전찬우
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.153-158
    • /
    • 1999
  • In the design and analysis of soil nailed slope, interaction between soil and nail is one of important problems. In the present analysis approaches for the interactions have developed a elastic analysis approach or a plastic analysis approach. However these approaches are not able to estimate the general interaction between soil and nail. In this study the general interaction between soil and nail using the strain wedge model is proposed. Also results of comparison between the proposed method and full scale test results by Gassler(1976) and large scale experimental results at Oxford University are shown in good agreements.

  • PDF

Experimental study of a modeled building frame supported by pile groups embedded in cohesionless soil

  • Ravi Kumar Reddy, C.;Gunneswara Rao, T.D.
    • Interaction and multiscale mechanics
    • /
    • v.4 no.4
    • /
    • pp.321-336
    • /
    • 2011
  • This paper presents the results of static vertical load tests carried out on a model building frame supported by pile groups embedded in cohesionless soil (sand). The effect of soil interaction on displacements and rotation at the column base and also the shears and bending moments in the columns of the building frame were investigated. The experimental results have been compared with those obtained from the finite element analysis and conventional method of analysis. Soil nonlinearity in the lateral direction is characterized by the p-y curves and in the axial direction by nonlinear vertical springs along the length of the piles (${\tau}-z$ curves) at their tips (Q-z curves). The results reveal that the conventional method gives the shear force in the column by about 40-60%, the bending moment at the column top about 20-30% and at the column base about 75-100% more than those from the experimental results. The response of the frame from the experimental results is in good agreement with that obtained by the nonlinear finite element analysis.

Seismic Analysis of Bridges Accounting for Soil-Pile-Structure Interaction (지반-말뚝-구조물 상호작용을 고려한 교량구조물의 지진해석)

  • Kim, Moon-Kyun;Lim, Yun-Mook;Cho, Kyung-Hwan;Kim, Ji-Sun
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.405-412
    • /
    • 2005
  • In this study, a numerical method for soil-pile-structure interaction problems in multi-layered half-plane is developed. The total soil-pile-structure interaction system is divided into two parts namely, nonlinear structure part and linear soil-pile interaction parts. In the structure field, the general finite element method is introduced to solve the dynamic equation of motion for the structure. In the soil-pile structure interaction part, physical model consisting of lumped parameter, which is frequency dependent coefficient and determined by rigorous analysis method is introduced. Using proposed analysis procedure, the nonlinear behavior of structure considering soil-structure interaction can be efficiently determined in time domain and the analysis cost is dramatically reduced.

  • PDF