The flow from developing a machine learning model to deploying it in a production environment suffers challenges. Efficient and reliable deployment is critical for realizing the true value of machine learning models. Bridging this gap between development and publication has become a pivotal concern in the machine learning community. FastAPI, a modern and fast web framework for building APIs with Python, has gained substantial popularity for its speed, ease of use, and asynchronous capabilities. This paper focused on leveraging FastAPI for deploying machine learning models, addressing the potentials associated with integration, scalability, and performance in a production setting. In this work, we explored the seamless integration of machine learning models into FastAPI applications, enabling real-time predictions and showing a possibility of scaling up for a more diverse range of use cases. We discussed the intricacies of integrating popular machine learning frameworks with FastAPI, ensuring smooth interactions between data processing, model inference, and API responses. This study focused on elucidating the integration of machine learning models into production environments using FastAPI, exploring its capabilities, features, and best practices. We delved into the potential of FastAPI in providing a robust and efficient solution for deploying machine learning systems, handling real-time predictions, managing input/output data, and ensuring optimal performance and reliability.
R 프로그래밍 시스템은 인터넷을 통해 개방적이고 무료로 제공이 된다. R 환경은 헌신적이고 독자적인 사용자 그룹이 제공하는 다양한 함수가 포함되는 라이브러리에 의해 그 기능이 지속적으로 풍부해지고 다양해지고 있다. R의 사용은 조직에서의 빅데이터 분석이 점차 도입되면서 다양한 데이터 형태의 데이터 조작과 데이터 분석처리가 요구되면서 점차 채택되기 시작하였다. 그러나 R 수용에 대한 연구는 아직까지 존재하지 않고 있다. 본 연구는 교육환경의 사용자가 R을 수용하는데 미치는 인지변수를 식별하고, 그들간의 관계를 규명하고자 한다. 기존의 기술수용모형에 주관적 규범과 소프트웨어 역량을 추가한 확장된 R 수용모델을 제안하고, 경로분석을 통하여 가설을 검정하였다. 사용의도에 정의 영향을 미치는 변수는 주관적 규범, 지각된 편리성, 지각된 유용성으로 밝혀졌고, 지각된 유용성은 주관적 규범, 소프트웨어 역량, 그리고 지각된 편리성으로부터 영향을 받는 것으로 나타났다. 본 연구가 이전 연구와의 주요 차이점은 대상 시스템이 독립적인 시스템이 아니고, 또한 시스템은 정적이고 개발이 확정된 상태가 아닌 진화하고 오픈소스 시스템을 대상으로 했다는 것이다. 또한 R 환경은 플랫폼으로서, 다양한 통계분석, 빅데이터분석, 그리고 시각화가 가능한 시스템이다. 우리는 TAM(Technology Acceptance Model)을 적용하여 R플랫폼에 대한 사용자의 수용에 영향을 주는 변수를 식별하고 인과관계를 처음으로 시도하였다. 또 다른 기여도는 기존의 TAM모형에 주관적 규범과 소프트웨어 역량 개념을 추가한 확장된 모형을 식별한 것이다. 본 연구결과는 통계나 빅데이터 분석 패키지 도입 계획이 있는 대학이나 기업체에 시사점을 제공할 수 있을 것이다. 그러나 분석에 사용된 표본의 수가 적고, 표본이 모집단을 대표할 수 있다는 근거가 약해 제안된 모델의 신뢰성 및 타당성이 상대적으로 미흡하다고 할 수 있을 것이다. 따라서, 향후 연구에서는 확정적 연구를 위해서는 이와 같은 문제점에 대한 보완이 필요하다고 판단된다.
본 연구는 한국형 유압드릴에 적합한 고출력 드리프터 개발을 위해 해석모델 개발 및 설계변수 민감도 분석을 목표로 한다. 이러한 연구는 설계변수 민감도 분석을 통하여 각각의 설계인자들이 타격성능에 미치는 영향을 파악함으로써 타격성능 및 안정성 향상을 위한 최적화 작업에 기틀을 마련하는 연구이다. 본 연구를 진행하는 순서는 다음과 같다. 먼저 드리프터의 동역학 해석모델을 개발하고 해석결과와 실험결과를 비교하여 해석모델의 신뢰성을 확보한다. 그 후 한국형 유압드릴에 적합하도록 드리프터를 재설계하며, 마지막으로 재설계된 드리프터의 설계변수 민감도 분석을 실시하여 타격성능에 미치는 영향을 파악하고 상위민감도를 가진 변수들을 추출한다. 드리프터의 해석모델은 다물리 해석 소프트웨어인 SimulationX를 사용하여 모델링 하였으며, 설계변수 민감도 분석은 EasyDesign을 사용하여 진행하였다.
본 논문에서는 상용 유한 요소 해석 프로그램인 SAMCEF 를 이용하여 고속 철도 차량의 집전성능을 예측할 수 있는 해석 모델을 개발하였다. 3 자유도 스프링-댐퍼-질량의 판토그래프 모델을 생성하였고, 실제 시스템과의 리셉턴스를 비교함으로써 신뢰성을 검증하였다. UIC 799 OR 기준에서 제시한 가선계의 이론적 파동전파 속도와 가선계 유한 요소 해석 모델에서 측정한 파동 전파 속도를 비교 하였다. 드로퍼의 길이를 조절하여 전차선의 중력에 의한 초기 처짐 현상을 구현하였다. 가선계와 판토그래프를 접촉 요소를 이용하여 연성하였으며, 판토그래프가 300 km/h 및 370 km/h 로 주행할 때의 접촉력 변화를 도출하였다. 접촉력의 평균, 표준편차, 최대 및 최소값 등을 분석함으로써 본 논문에서 제시한 해석모델의 유효성을 검증하였다.
Safety critical systems, real time systems, and event-based systems have a complex set of events and their own interdependency, which makes them difficult to test ma Safety critic Safety critical systems, real time systems, and event-based systems have a complex set of events and their own interdependency, which makes them difficult to test manually. In order to cut down on costs, save time, and increase reliability, the model based testing approach is the best solution. Such an approach does not require applications or codes prior to generating test cases, so it leads to the early detection of faults, which helps in reducing the development time. Several model-based testing approaches have used different UML models but very few works have been reported to show the generation of test cases that use events. Test cases that use events are an apt choice for these types of systems. However, these works have considered events that happen at a user interface level in a system while other events that happen in a system are not considered. Such works have limited applications in testing the GUI of a system. In this paper, a novel model-based testing approach is presented using business events, state events, and control events that have been captured directly from requirement specifications. The proposed approach documents events in event templates and then builds an event-flow model and a fault model for a system. Test coverage criterion and an algorithm are designed using these models to generate event sequence based test scenarios and test cases. Unlike other event based approaches, our approach is able to detect the proposed faults in a system. A prototype tool is developed to automate and evaluate the applicability of the entire process. Results have shown that the proposed approach and supportive tool is able to successfully derive test scenarios and test cases from the requirement specifications of safety critical systems, real time systems, and event based systems.
헬기의 능동진동제어시스템(AVCS)은 주로터로부터 발생되는 진동을 제어하며, 수동형 진동저감장치 대비 저중량으로 우수한 진동저감 성능을 발휘한다. 본 논문에서는 FxLMS 알고리즘을 기반으로 타코미터 및 가속도 센서 신호를 통해 연산된 제어명령을 하중발생기(CFG)로 전달하여 소형민수헬기의 진동을 제어하는 소프트웨어 개발 및 검증 내용을 제시하였다. DO-178C /DO-331 표준에 따라 모델 기반 설계 기법을 통해 진동제어 소프트웨어를 개발하였으며, PILS 및 HILS 환경에서 실시간 작동 성능을 평가하였다. 특히, PILS 환경에서는 LDRA 기반 검증 커버리지를 통해 소프트웨어의 신뢰성을 향상시켰다. AVCS를 소형민수헬기에 적용하기 위해 지상/비행시험을 통해 대상 헬기 동적응답특성 모델을 획득하였다. 이를 기반으로 시스템 최적화 분석 및 비행시험을 통해 최적 성능을 발휘하는 AVCS 형상을 결정하고, STC 인증을 획득하였다.
최근 내장형 시스템이 점점 많은 분야에 사용되며, 시스템에 특화된 운영체제 커널에 대한 필요성이 커지고 있다. 하지만, 커널 개발은 코드의 복잡성 등의 이유로 말미암아 테스팅에 큰 비용이 소요됨에도 불구하고, 높은 신뢰성을 달성하기가 어려운 실정이다. 이러한 커널 개발 및 테스팅의 어려움을 극복하기 위해, 운영체제 커널의 동시성 오류 검출을 지원하는 모델 기반의 커널 테스팅 (MOKERT) 프레임워크를 제안한다. MOKERT 프레임워크는 주어진 C 프로그램을 Promela 정형 명세 모델로 변환하고 나서 Spin 모델검증기를 사용하여 검증하고, 검증반례가 생성된 경우, 이 검증반례를 실제 커널 코드에서 실행을 시켜서 진위를 확인한다. 본 연구에서는 MOKERT 프레임워크를 리눅스 proc파일시스템에 적용하여, ChangeLog에 보고된 오류가 실제로 자원경쟁문제를 일으킴을 확인하였을 뿐만 아니라, 커널 패닉을 일으키는 새로운 오류도 발견하였다.
Accurate construction cost estimation in the initial stage of building project plays a key role for project success and for mitigation of disputes. Total construction cost(TCC) estimation of apartment projects in Vietnam has become more important because those projects increasingly rise in quantity with the urbanization and population growth. This paper presents the application of artificial neural networks(ANNs) in estimating TCC of apartment projects. Ninety-one questionnaires were collected to identify input variables. Fourteen data sets of completed apartment projects were obtained and processed for training and generalizing the neural network(NN). MATLAB software was used to train the NN. A program was constructed using Visual C++ in order to apply the neural network to realistic projects. The results suggest that this model is reasonable in predicting TCCs for apartment projects and reinforce the reliability of using neural networks to cost models. Although the proposed model is not validated in a rigorous way, the ANN-based model may be useful for both practitioners and researchers. It facilitates systematic predictions in early phases of construction projects. Practitioners are more proactive in estimating construction costs and making consistent decisions in initial phases of apartment projects. Researchers should benefit from exploring insights into its implementation in the real world. The findings are useful not only to researchers and practitioners in the Vietnam Construction Industry(VCI) but also to participants in other developing countries in South East Asia. Since Korea has emerged as the first largest foreign investor in Vietnam, the results of this study may be also useful to participants in Korea.
Reinforced concrete (RC) structures consist of two different materials: concrete and steel bar. The stress transfer behaviour between the two materials through bond plays an important role in the load-carrying capacity of RC structures, especially when they subject to lateral load such as blast and seismic load. Therefore, bond and slip between concrete and reinforcement bar will affect the response of RC structures under such loads. However, in most numerical analyses of blast-induced structural responses, the perfect bond between concrete and steel bar is often assumed. The main reason is that it is very difficult to model bond slip in the commercial finite element software, especially in hydrodynamic codes. In the present study, a one-dimensional slide line contact model in LS-DYNA for modeling sliding of rebar along a string of concrete nodes is creatively used to model the bond slip between concrete and steel bars in RC structures. In order to model the bond slip accurately, a new approach to define the parameters of the one-dimensional slide line model from common pullout test data is proposed. Reliability and accuracy of the proposed approach and the one-dimensional slide line in modelling the bond slip between concrete and steel bar are demonstrated through comparison of numerical results and experimental data. A case study is then carried out to investigate the bond slip effect on numerical analysis of blast-induced responses of a RC column. Parametric studies are also conducted to investigate the effect of bond shear modulus, maximum elastic slip strain, and damage curve exponential coefficient on blast-induced response of RC columns. Finally, recommendations are given for modelling the bond slip in numerical analysis of blast-induced responses of RC columns.
전자 투표 시스템은 90년대 중반부터 세계 많은 국가들에서 널리 활용되고 있다. 최근에는 유권자들에게 신뢰성, 공정성, 그리고 투명성을 제공하기 위해 기존의 전자 투표 시스템에 블록체인을 적용하는 연구가 진행되어 왔다. 이 방식은 분산형 시민 참여를 촉진하는 기술로 유용성이 높다. 그러나 기존의 블록체인을 이용한 전자 투표 시스템들이 익명성을 충분하게 제공하지 못하고 있다. 익명성 부족은 분산형 시민 참여에서 많이 요구되는 중소규모의 투표의 경우에 중요한 제약 조건으로 작용하고 있다. 본 연구에서는 대시코인의 마스터 노드의 개념을 응용하여 블록체인을 사용한 투표시스템에 익명성을 제공하는 모델을 제안하였다. 먼저 블록체인에서의 송금과 투표 시스템의 요구사항에 대한 차이점들을 정의하였다. 블록체인 즉 탈중앙화 개발 환경에서 익명성을 제공하기 위한 병행적이고 자율적인 모델과 알고리즘을 제안하였다. 또한 제안된 모델에 대한 보안성과 운영 환경에 대한 논의를 기술하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.