• Title/Summary/Keyword: Software reliability model

Search Result 579, Processing Time 0.028 seconds

A Comparative Study on Reliability Attributes for Software Reliability Model Dependent on Lindley and Erlang Life Distribution (랜들리 및 어랑 수명분포에 의존한 소프트웨어 신뢰성 모형에 대한 신뢰도 속성 비교 연구)

  • Yang, Tae-Jin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.5
    • /
    • pp.469-475
    • /
    • 2017
  • Software reliability is one of the most basic and essential problems in software development. In order to detect the software failure phenomenon, the intensity function, which is the instantaneous failure rate in the non-homogeneous Poisson process, can have the property that it is constant, non-increasing or non-decreasing independently at the failure time. In this study, was compared the reliability performance of the software reliability model using the Landely lifetime distribution with the intensity function decreasing pattern and Erlang lifetime distribution from increasing to decreasing pattern in the software product testing process. In order to identify the software failure phenomenon, the parametric estimation was applied to the maximum likelihood estimation method. Therefore, in this paper, was compared and evaluated software reliability using software failure interval time data. As a result, the reliability of the Landely model is higher than that of the Erlang distribution model. But, in the Erlang distribution model, the higher the shape parameter, the higher the reliability. Through this study, the software design department will be able to help the software design by applying various life distribution and shape parameters, and providing software reliability attributes data and basic knowledge to software reliability model using software failure analysis.

AN IMPROVED ADDITIVE MODEL FOR RELIABILITY ANALYSIS OF SOFTWARE WITH MODULAR STRUCTURE

  • Chatterjee, S.;Nigam, S.;Singh, J.B.;Upadhyaya, L.N.
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.3_4
    • /
    • pp.489-498
    • /
    • 2012
  • Most of the software reliability models are based on black box approach and these models consider the entire software system as a single unit. Present day software development process has changed a lot. In present scenario these models may not give better results. To overcome this problem an improved additive model has been proposed in this paper, to estimate the reliability of software with modular structure. Also the concept of imperfect debugging has been also considered. A maximum likelihood estimation technique has been used for estimating the model parameters. Comparison has been made with an existing model. ${\chi}^2$ goodness of fit has been used for model fitting. The proposed model has been validated using real data.

Two model comparisons of software reliability analysis for Burr type XII distribution

  • An, Jeong-Hyang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.4
    • /
    • pp.815-823
    • /
    • 2012
  • In this paper reliability growth model in which the operating time between successive failure is a continuous random variable is proposed. This model is for Burr type XII distribution with two parameters which is discussed in two versions: the order statistics and non-homogeneous Poisson process. The two software reliability measures are obtained. The performance for two versions of the suggested model is tested on real data set by U-plot and Y-plot using Kolmogorov distance.

A Study on the Property Analysis of Software Reliability Model with Shape Parameter Change of Finite Fault NHPP Erlang Distribution (유한고장 NHPP 어랑분포의 형상모수 변화에 따른 소프트웨어 신뢰성 모형의 속성 분석에 관한 연구)

  • Min, Kyung Il
    • Journal of Information Technology Applications and Management
    • /
    • v.25 no.4
    • /
    • pp.115-122
    • /
    • 2018
  • Software reliability has the greatest impact on computer system reliability and software quality. For this software reliability analysis, In this study, we compare and analyze the trends of the properties affecting the reliability according to the shape parameters of Erlang distribution based on the finite fault NHPP. Software failure time data were used to analyze software failure phenomena, the maximum likelihood estimation method was used for parameter estimation. As a result, it can be seen that the intensity function is effective because it shows a tendency to decrease with time when the shape parameters a = 1 and a = 3. However, the pattern of the mean value function showed an underestimation pattern for the true values when the shape parameters a = 1 and a = 2, but it was found to be more efficient when a = 3 because the error width from the true value was small. Also, in the reliability evaluation of the future mission time, the stable and high trend was shown when the shape parameters a = 1 and a = 3, but on the contrary, when a = 2, the reliability decreased with the failure time. Through this study, the property of finite fault NHPP Erlang model according to the change of shape parameter without existing research case was newly analyzed, and new research information that software developers can use as basic guideline was presented.

An Evolution of Software Reliability in a Large Scale Switching System: using the software

  • Lee, Jae-Ki;Nam, Sang-Sik;Kim, Chang-Bong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.4A
    • /
    • pp.399-414
    • /
    • 2004
  • In this paper, an evolution of software reliability engineering in a large-scale software project is summarized. The considered software consists of many components, called functional blocks in software of switching system. These functional blocks are served as the unit of coding and test, and the software is continuously updated by adding new functional blocks. We are mainly concerned with the analysis of the effects of these software components in software reliability and reliability evolution. We analyze the static characteristics of the software related to software reliability using collected failure data during system test. We also discussed a pattern which represents a local and global growth of the software reliability as version evolves. To find the pattern of system software, we apply the S-shaped model to a collection of failure data sets of each evolutionary version and the Goel-Okumoto(G-O) model to a grouped overall failure data set. We expect this pattern analysis will be helpful to plan and manage necessary human/resources fur a new similar software project which is developed under the same developing circumstances by estimating the total software failures with respect to its size and time.

The Comparative Study based on Gompertz Software Reliability Model of Shape Parameter (곰페르츠형 형상모수에 근거한 소프트웨어 신뢰성모형에 대한 비교연구)

  • Shin, Hyun Cheul;Kim, Hee Cheul
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.2
    • /
    • pp.29-36
    • /
    • 2014
  • Finite failure NHPP software reliability models presented in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault. In this paper, proposes the Gompertz distribution reliability model, which made out efficiency application for software reliability. Algorithm to estimate the parameters used to maximum likelihood estimator and bisection method, model selection based on mean square error (MSE) and coefficient of determination$(R^2)$, for the sake of efficient model, was employed. Analysis of failure using real data set for the sake of proposing fixed shape parameter of the Gompertz distribution was employed. This analysis of failure data compared with the Gompertz distribution model of shape parameter. In order to insurance for the reliability of data, Laplace trend test was employed. In this study, the proposed Gompertz model is more efficient in terms of reliability in this area. Thus, Gompertz model can also be used as an alternative model. From this paper, software developers have to consider the growth model by prior knowledge of the software to identify failure modes which can was helped.

A Study on the Optimal Release Time Decision of a Developed Software by using Logistic Testing Effort Function (로지스틱 테스트 노력함수를 이용한 소프트웨어의 최적인도시기 결정에 관한 연구)

  • Che, Gyu-Shik;Kim, Yong-Kyung
    • Journal of Information Technology Applications and Management
    • /
    • v.12 no.2
    • /
    • pp.1-13
    • /
    • 2005
  • This paper proposes a software-reliability growth model incoporating the amount of testing effort expended during the software testing phase after developing it. The time-dependent behavior of testing effort expenditures is described by a Logistic curve. Assuming that the error detection rate to the amount of testing effort spent during the testing phase is proportional to the current error content, a software-reliability growth model is formulated by a nonhomogeneous Poisson process. Using this model the method of data analysis for software reliability measurement is developed. After defining a software reliability, This paper discusses the relations between testing time and reliability and between duration following failure fixing and reliability are studied. SRGM in several literatures has used the exponential curve, Railleigh curve or Weibull curve as an amount of testing effort during software testing phase. However, it might not be appropriate to represent the consumption curve for testing effort by one of already proposed curves in some software development environments. Therefore, this paper shows that a logistic testing-effort function can be adequately expressed as a software development/testing effort curve and that it gives a good predictive capability based on real failure data.

  • PDF

Bayesian Inference and Model Selection for Software Growth Reliability Models using Gibbs Sampler (몬테칼로 깁스방법을 적용한 소프트웨어 신뢰도 성장모형에 대한 베이지안 추론과 모형선택에 관한 연구)

  • 김희철;이승주
    • Journal of Korean Society for Quality Management
    • /
    • v.27 no.3
    • /
    • pp.125-141
    • /
    • 1999
  • Bayesian inference and model selection method for software reliability growth models are studied. Software reliability growth models are used in testing stages of software development to model the error content and time intervals between software failures. In this paper, we could avoid the multiple integration by the use of Gibbs sampling, which is a kind of Markov Chain Monte Carlo method to compute the posterior distribution. Bayesian inference and model selection method for Jelinski-Moranda and Goel-Okumoto and Schick-Wolverton models in software reliability with Poisson prior information are studied. For model selection, we explored the relative error.

  • PDF

Parameter Estimation and Prediction for NHPP Software Reliability Model and Time Series Regression in Software Failure Data

  • Song, Kwang-Yoon;Chang, In-Hong
    • Journal of Integrative Natural Science
    • /
    • v.7 no.1
    • /
    • pp.67-73
    • /
    • 2014
  • We consider the mean value function for NHPP software reliability model and time series regression model in software failure data. We estimate parameters for the proposed models from two data sets. The values of SSE and MSE is presented from two data sets. We compare the predicted number of faults with the actual two data sets using the mean value function and regression curve.

A Dependability Modeling of Software Under Memory Faults for Digital System in Nuclear Power Plants

  • Park, Jong-Gyun;Seong, Poong-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.433-443
    • /
    • 1997
  • In this work, an analytic approach to the dependability of software in the operational phase is suggested with special attention to the hardware fault effects on the software behavior : The hardware faults considered are memory faults and the dependability measure in question is the reliability. The model is based on the simple reliability theory and the graph theory which represents the software with graph composed of nodes and arcs. Through proper transformation, the graph can be reduced to a simple two-node graph and the software reliability is derived from this graph. Using this model, we predict the reliability of an application software in the digital system (ILS) in the nuclear power plant and show the sensitivity of the software reliability to the major physical parameters which affect the software failure in the normal operation phase. We also found that the effects of the hardware faults on the software failure should be considered for predicting the software dependability accurately in operation phase, especially for the software which is executed frequently. This modeling method is particularly attractive for the medium size programs such as the microprocessor-based nuclear safety logic program.

  • PDF