• Title/Summary/Keyword: Software release time

Search Result 106, Processing Time 0.022 seconds

The Property of Software Optimal Release Time Based on Log Poission Execution Time Model Using Interval Failure Times (고장 간격 수명 시간을 이용한 로그 포아송 실행 시간 모형의 소프트웨어 최적방출시간 특성에 관한 연구)

  • Sin, Hyun-Cheul;Kim, Hee-Cheul
    • Convergence Security Journal
    • /
    • v.10 no.1
    • /
    • pp.55-61
    • /
    • 2010
  • It is of great practical interest to deciding when to stop testing a software system in development phase and transfer it to the user. This decision problem called an optimal release policies. In this paper, because of the possibility of introducing new faults when correcting or modifying the software, we were researched release comparative policies which based on infinite failure NHPP model and types of interval failure times. The policies which minimize a total average software cost of development and maintenance under the constraint of satisfying a software reliability requirement can optimal software release times. In a numerical example, applied data which were patterns, if intensity function constant or increasing, decreasing, estimated software optimal release time.

Optimal Software Release Policies under Increasing Error Correction Cost (증가(増加)하는 오류수정비용하(誤謬修正費用下)에서의 최적(最適) 소프트웨어 방출정책(放出政策))

  • Bae, Do-Seon;Yun, Won-Yeong;Lee, Yeong-Bong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.15 no.1
    • /
    • pp.51-63
    • /
    • 1989
  • This paper considers software release problems based on Goel-Okumoto and S-shaped reliability growth models. Test of the software system is terminated after a preassigned time T, and it is released to the operational phase. It is assumed that correction cost of an error is increasing with test or operation time. Optimum software release time is obtained using total expected cost on the software life time as a criterion for optimization. In addition, optimal software release policies under the constraint of a software reliability requirement are discussed.

  • PDF

The Comparative Study of the Warranty Cost Model for Software Reliability Time Based on Extreme Value Distribution (극값 분포 특성을 가진 소프트웨어 신뢰성 보증 모형에 관한 비교연구)

  • Kim, Hee-Cheul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.6B
    • /
    • pp.623-629
    • /
    • 2009
  • In this research, the process of developing software products to users in transfer by considering the warranty period to determine the timing of the release period is a comparative study of models. For the results of demonstration, exponential software reliability model increases the warranty period, the higher the initial period, but shows almost a similar release. In contrast, the optimal release time of imperfect debugging software reliability model, lower the initial warranty period, but the pattern is expected to rise slightly larger. The proposed model, extreme value distribution model, pattern of the optimal release time gradually increase, have a form that can be drawn. These research results through, warranty period and release the software developers understand the relationship between the optimal time for software development by using advance information could do is feed.

The Bayesian Approach of Software Optimal Release Time Based on Log Poisson Execution Time Model (포아송 실행시간 모형에 의존한 소프트웨어 최적방출시기에 대한 베이지안 접근 방법에 대한 연구)

  • Kim, Hee-Cheul;Shin, Hyun-Cheul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.7
    • /
    • pp.1-8
    • /
    • 2009
  • In this paper, make a study decision problem called an optimal release policies after testing a software system in development phase and transfer it to the user. The optimal software release policies which minimize a total average software cost of development and maintenance under the constraint of satisfying a software reliability requirement is generally accepted. The Bayesian parametric inference of model using log Poisson execution time employ tool of Markov chain(Gibbs sampling and Metropolis algorithm). In a numerical example by T1 data was illustrated. make out estimating software optimal release time from the maximum likelihood estimation and Bayesian parametric estimation.

The Comparative Study of Software Optimal Release Time of Finite NHPP Model Considering Property of Nonlinear Intensity Function (비선형 강도함수 특성을 이용한 유한고장 NHPP모형에 근거한 소프트웨어 최적방출시기 비교 연구)

  • Kim, Kyung-Soo;Kim, Hee-Cheul
    • Journal of Digital Convergence
    • /
    • v.11 no.9
    • /
    • pp.159-166
    • /
    • 2013
  • In this paper, make a study decision problem called an optimal release policies after testing a software system in development phase and transfer it to the user. When correcting or modifying the software, finite failure non-homogeneous Poisson process model, presented and propose release policies of the life distribution, half-logistic property model which used to an area of reliability because of various shape and scale parameter. In this paper, discuss optimal software release policies which minimize a total average software cost of development and maintenance under the constraint of satisfying a software reliability requirement. In a numerical example, the parameters estimation using maximum likelihood estimation of failure time data, make out estimating software optimal release time. Software release time is used as prior information, potential security damages should be reduced.

Study on The Optimal Software Release Time Methodology (소프트웨어 치적 배포시기 결정 방법에 대한 고찰)

  • 이재기;박종대;남상식;김창봉
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.2
    • /
    • pp.26-37
    • /
    • 2003
  • An optimal software release, which is related to the development cost, error detection and correction under the various operation systems, is a critical factor for managing project. This paper described optimal software release issues to predict the release time of large switching system with the system stability point of view and evaluated a timely supply of target system, proper utilization of resources under the software reliability valuation basis. Finally, Using initial failure data, based on the exponential reliability growth model methodology, optimal release time, and analysis of failure data during the system testing and managing methodologies were presented.

The Software Reliability Growth Models for Software Life-Cycle Based on NHPP

  • Nam, Kyung-H.;Kim, Do-Hoon
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.3
    • /
    • pp.573-584
    • /
    • 2010
  • This paper considers the differences in the software execution environments in the testing phase and the operational phase to determine the optimal release time and warranty period of software systems. We formulate equations for the total expected software cost until the end of the software life cycle based on the NHPP. In addition, we derive the optimal release time that minimizes the total expected software cost for an imperfect debugging software reliability model. Finally, we analyze the sensitivity of the optimal testing and maintenance design related to variation of the cost model parameters based on the fault data observed in the actual testing process, and discuss the quantitative properties of the proposed model.

Optimal Release Policies of Software System with Scheduled Delivery Time (예정된 인도시기를 가진 Software시스템의 최적방출정책)

  • 정영배;신현재
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.9 no.13
    • /
    • pp.29-32
    • /
    • 1986
  • A decision procedure to determine when computer software should be released after testing is described. This paper extends optimum release policies minimizing the total expected software cost with a scheduled software delivery time under reliability requirement constraint. Such cost considerations enable us to make a release decision as to when transfer a software system from testing phase to operational phase. The underlying model is software reliability growth model described by a nonhomogeneous poisson process. It is assumed that the penalty cost function due to delay for a scheduled software delivery time is linearly proportional to time. Numerical examples are shown to illustrate the results.

  • PDF

A Study on Optimal Software Maintenance Policies with Warranty Period (보증기기간을 고려한 최적 소프트웨어의 보전정책 연구)

  • Nam, Kyung-H.;Kim, Do-Hoon
    • Journal of Korean Society for Quality Management
    • /
    • v.39 no.2
    • /
    • pp.170-178
    • /
    • 2011
  • In general, a software fault detection phenonenon is described by a software reliability model based on a nonhomogeneous Poisson process(NHPP). In this paper, we propose a software reliability growth model considering the differences of the software environments in both the testing phase and the operational phase. Also, we consider the problem of determining the optimal release time and the optimal warranty period that minimize the total expected software cost which takes account of periodic software maintenance(e.g. patch, update, etc). Finally, we analyze the sensitivity of the optimal release time and warranty period based on the fault data observed in the actual testing process.

A Bayesian Approach to Software Optima I Re lease Policy (소프트웨어 최적출하정책의 베이지안 접근방법)

  • 김희수;이애경
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2002.06a
    • /
    • pp.273-273
    • /
    • 2002
  • In this paper, we investigate a software release policy with software reliability growth factor during the warranty period by assuming that the software reliability growth is assumed to occur after the testing phase with probability p and the software reliability growth is not assumed to occur after the testing phase with probability 1-p. The optimal release policy to minimize the expected total software cost is discussed. Numerical examples are shown to illustrate the results of the optimal policy. And we consider a Bayesian decision theoretic approach to determine an optimal software release policy. This approach enables us to update our uncertainty when determining optimal software release time, When the failure time is Weibull distribution with uncertain parameters, a bayesian approach is established. Finally, numerical examples are presented for illustrative propose.

  • PDF