• Title/Summary/Keyword: Software debugging

Search Result 155, Processing Time 0.023 seconds

A Software Performance Evaluation Model with Mixed Debugging Process (혼합수리 과정을 고려한 소프트웨어성능 평가 모형)

  • Jang, Kyu-Beom;Lee, Chong-Hyung
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.6
    • /
    • pp.741-750
    • /
    • 2011
  • In this paper, we derive an software mixed debugging model based on a Markov process, assuming that the length of time to perform the debugging is random and its distribution may depend on the fault type causing the failure. We assume that the debugging process starts as soon as a software failure occurs, and either a perfect debugging or an imperfect debugging is performed upon each fault type. One type is caused by a fault that is easily corrected and in this case, the perfect debugging process is performed. An Imperfect debugging process is performed to fix the failure caused by a fault that is difficult to correct. Distribution of the first passage time and working probability of the software system are obtained; in addition, an availability function of a software system which is the probability that the software is in working at a given time, is derived. Numerical examples are provided for illustrative purposes.

Software Taskset Processing Evaluation Based on a Mixed Debugging Process

  • Kim, U-Jung;Lee, Chong-Hyung
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.4
    • /
    • pp.571-577
    • /
    • 2012
  • Modules that consist of software are respectively coded in the early development phase and the modules are unified as a software. After unification, the software is repeatedly tested with a given taskset (the set of module tasks that are tested simultaneously) until a required performance level is satisfied. In this paper, we expand the one-module software debugging model of Jang and Lee (2011) to a multi-module debugging model and derive the taskset completion probability and the mean of the completed tasksets under the assumption that the processing times of module tasks given in a taskset are mutually dependent.

An Efficient Repository Model for Online Software Education

  • Lee, Won Joo;Baek, Yuncheol;Yang, Byung Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.12
    • /
    • pp.219-226
    • /
    • 2016
  • In this paper, we propose an efficient repository model for online software education. The software education of app development consists of 7 stages: coding & debugging, submit, collaboration, review, validate, deployment, certification. Proposed repository model supports all 7 stages efficiently. In the coding & debugging stage, the students repeat coding and debugging of source. In the submit stage, the output of previous process such as source codes, project, and videos, are uploaded to repository server. In the collaboration stage, other students or experts can optimize or upgrade version of source code, project, and videos stored in the repository. In the review stage, mentors can review and send feedbacks to students. In the validate stage, the specialists validate the source code, project, and the videos. In the deployment stage, the verified source code, project, and videos are deployed. In the certification stage, the source code, project, and the videos are evaluated to issue the certificate.

Automated Coordinator between Testing and Debugging of Embedded Software (임베디드 소프트웨어를 위한 테스트와 디버깅 연계 자동화 방안)

  • Choi, Yoo-Na;Seo, Joo-Young;Choi, Byoung-Ju
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.5
    • /
    • pp.576-580
    • /
    • 2010
  • Generally, due to the strong coherence between embedded software and hardware or peripheral software, embedded software is tested by using black-box test based on user scenario for the whole system. This paper suggests the method to coordinate between testing and debugging under consideration for difficulties on solving out the defects detected from black-box test. First of all, from test result analysis, it builds up the debugging strategies enable to trace the locations of the defect's causes. And along with the strategies, it implements the generator of test scripts to be performed on the emulator environment. Through these steps, it can coordinate embedded software testing and debugging activities.

Markovian Perfect Debugging Model and Its Related Measures

  • Lee Chong Hyung;Nam Kyung Hyun;Park Dong Ho
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2000.11a
    • /
    • pp.57-64
    • /
    • 2000
  • In this paper we consider a Markovian perfect debugging model for which the software failure is caused by two types of faults, one which is easily detected and the other which is difficult to detect. When a failure occurs, a perfect debugging is immediately performed and consequently one fault is reduced from fault contents. We also treat the debugging time as a variable to develop a new debugging model. Several measures, including the distribution of first passage time to the specified number of removed faults, are also obtained using the proposed debugging model, Numerical examples are provided for illustrative purposes.

  • PDF

An Input Domain-Based Software Reliability Growth Model In Imperfect Debugging Environment (불완전 디버깅 환경에서 Input Domain에 기초한 소프트웨어 신뢰성 성장 모델)

  • Park, Joong-Yang;Kim, Young-Soon;Hwang, Yang-Sook
    • The KIPS Transactions:PartD
    • /
    • v.9D no.4
    • /
    • pp.659-666
    • /
    • 2002
  • Park, Seo and Kim (12) developed the input domain-based SRGM, which was able to quantitatively assess the reliability of a software system during the testing and operational phases. They assumed perfect debugging during testing and debugging phase. To make this input domain-based SRGM more realistic, this assumption should be relaxed. In this paper we generalize the input domain-based SRGM under imperfect debugging. Then its statistical characteristics are investigated.

Software Reliability Growth Models considering an Imperfect Debugging environments (불완전 디버깅 환경을 고려한 소프트웨어 신뢰도 성장모델)

  • 이재기;이규욱;김창봉;남상식
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.6A
    • /
    • pp.589-599
    • /
    • 2004
  • Most models assume the complete debugging environments by requiring a complete software correction in quantitative evaluation of software reliability. But, in many case, new faults are involved in debugging works, for complete software correction is impossible. In this paper, software growth model is proposed about incomplete debugging environments by considering the possibility of new faults involvements, and software faults occurrence status are also mentioned about NHPP by considering software faults under software operation environments and native faults owing to the randomly involved faults in operation before test. While, effective quantitative measurements are derived in software reliability evaluation, applied results are suggested by using actual data, and fitnesswith existing models are also compared and analyzed.

Evaluation of Software Task Processing Based on Markovian Imperfect Debugging Model and Its Release Policy (마코프 불완전 수리모형에 따른 소프트웨어 업무처리 능력평가 및 출하정책에 관한 연구)

  • Kim, U-Jung;Lee, Chong-Hyung
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.6
    • /
    • pp.891-898
    • /
    • 2010
  • In real software development fields, software is unified by several modules that are developed before the software testing period. For the evaluation of software task processing performance, this paper considers the software imperfect debugging model that is proposed by Lee and Park (2003) and presents the measures of a unified software, such as the completion probability of a task which is completed in a time interval and the expected number of the completed tasks. In addition, we suggest a software release policy that satisfies the required level of the expected perfect debugging, completion probability, and availability.

A Study on the Optimum Release Time Determination of Developing Software Considering Imperfect Debugging (불완전 디버깅을 고려한 개발 소프트웨어의 최적 인도 시기 결정 방법에 관한 연구)

  • Che Gyu Shik
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.6
    • /
    • pp.396-402
    • /
    • 2005
  • The software reliability growth model(SRGM) has been developed in order to evaluate such measures as remaining fault number, fault rate, and reliability for the developing stage software. Most of the study literatures assumed that this detecting efficiency was perfect. However the actual fault detecting is generally imperfect, and widely known to many persons. It is not easy to develop and remove the fault existing in the software because the fault finding is difficult, and the exact solving method also not easy, and new fault may be introduced depending on the tester's capability. There, the fault removing efficiency influences the software reliability growth or developing cost of software. It is a very useful measure throughout the developing stage, much helpful for the developer to evaluate the debugging efficiency, and evaluate additional workload. Hence, the study for the imperfect debugging is important in point of software reliability and cost. This paper proposes that the fault debugging is imperfect and new fault may be introduced for the developing software during the developing stage.

Estimation of Software Reliability with Multiple Errors (다중오류들을 갖는 소프트웨어 신뢰성의 추정)

  • Lee, In-Suk;Jung, Won-Tae;Jeong, Hye-Jeong
    • Journal of Korean Society for Quality Management
    • /
    • v.23 no.3
    • /
    • pp.57-68
    • /
    • 1995
  • In this paper, we consider possibility that the multiple errors occur in each testing stage. At present, software reliability modeling is considered as a part of software reliability quality assurance in software engineering. However they dealt with the software growth model for the single error debugging at each testing stage until now. Hence it is necessary to study software reliability with multiple errors debugging. Therefore we propose software reliability growth modeling and estimate the parameters in the proposed software reliability growth model for the multiple errors debugging at each testing stage.

  • PDF