• Title/Summary/Keyword: Software Prediction

Search Result 1,043, Processing Time 0.03 seconds

Tumor Margin Infiltration in Soft Tissue Sarcomas: Prediction Using 3T MRI Texture Analysis (연조직 육종의 종양 가장자리 침윤: 3T 자기공명영상 텍스처 분석을 통한 예측)

  • Minji Kim;Won-Hee Jee;Youngjun Lee;Ji Hyun Hong;Chan Kwon Jung;Yang-Guk Chung;So-Yeon Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.83 no.1
    • /
    • pp.112-126
    • /
    • 2022
  • Purpose To determine the value of 3 Tesla (T) MRI texture analysis for predicting tumor margin infiltration in soft tissue sarcomas. Materials and Methods Thirty-one patients who underwent 3T MRI and had a pathologically confirmed diagnosis of soft tissue sarcoma were included in this study. Margin infiltration on pathology was used as the gold standard. Texture analysis of soft tissue sarcomas was performed on axial T1-weighted images (WI) and T2WI, fat-suppressed contrast-enhanced (CE) T1WI, diffusion-weighted images (DWI) with b-value of 800 s/mm2, and apparent diffusion coefficient (ADC) was mapped. Quantitative parameters were compared between sarcomas with infiltrative margins and those with circumscribed margins. Results Among the 31 patients with soft tissue sarcomas, 23 showed tumor margin infiltration on pathology. There were significant differences in kurtosis with the spatial scaling factor (SSF) of 0 and 6 on T1WI, kurtosis (SSF, 0) on CE-T1WI, skewness (SSF, 0) on DWI, and skewness (SSF, 2, 4) on ADC between sarcomas with infiltrative margins and those with circumscribed margins (p ≤ 0.046). The area under the receiver operating characteristic curve based on MR texture features for identification of infiltrative tumor margins was 0.951 (p < 0.001). Conclusion MR texture analysis is reliable and accurate for the prediction of infiltrative margins of soft tissue sarcomas.

Social Network-based Hybrid Collaborative Filtering using Genetic Algorithms (유전자 알고리즘을 활용한 소셜네트워크 기반 하이브리드 협업필터링)

  • Noh, Heeryong;Choi, Seulbi;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.19-38
    • /
    • 2017
  • Collaborative filtering (CF) algorithm has been popularly used for implementing recommender systems. Until now, there have been many prior studies to improve the accuracy of CF. Among them, some recent studies adopt 'hybrid recommendation approach', which enhances the performance of conventional CF by using additional information. In this research, we propose a new hybrid recommender system which fuses CF and the results from the social network analysis on trust and distrust relationship networks among users to enhance prediction accuracy. The proposed algorithm of our study is based on memory-based CF. But, when calculating the similarity between users in CF, our proposed algorithm considers not only the correlation of the users' numeric rating patterns, but also the users' in-degree centrality values derived from trust and distrust relationship networks. In specific, it is designed to amplify the similarity between a target user and his or her neighbor when the neighbor has higher in-degree centrality in the trust relationship network. Also, it attenuates the similarity between a target user and his or her neighbor when the neighbor has higher in-degree centrality in the distrust relationship network. Our proposed algorithm considers four (4) types of user relationships - direct trust, indirect trust, direct distrust, and indirect distrust - in total. And, it uses four adjusting coefficients, which adjusts the level of amplification / attenuation for in-degree centrality values derived from direct / indirect trust and distrust relationship networks. To determine optimal adjusting coefficients, genetic algorithms (GA) has been adopted. Under this background, we named our proposed algorithm as SNACF-GA (Social Network Analysis - based CF using GA). To validate the performance of the SNACF-GA, we used a real-world data set which is called 'Extended Epinions dataset' provided by 'trustlet.org'. It is the data set contains user responses (rating scores and reviews) after purchasing specific items (e.g. car, movie, music, book) as well as trust / distrust relationship information indicating whom to trust or distrust between users. The experimental system was basically developed using Microsoft Visual Basic for Applications (VBA), but we also used UCINET 6 for calculating the in-degree centrality of trust / distrust relationship networks. In addition, we used Palisade Software's Evolver, which is a commercial software implements genetic algorithm. To examine the effectiveness of our proposed system more precisely, we adopted two comparison models. The first comparison model is conventional CF. It only uses users' explicit numeric ratings when calculating the similarities between users. That is, it does not consider trust / distrust relationship between users at all. The second comparison model is SNACF (Social Network Analysis - based CF). SNACF differs from the proposed algorithm SNACF-GA in that it considers only direct trust / distrust relationships. It also does not use GA optimization. The performances of the proposed algorithm and comparison models were evaluated by using average MAE (mean absolute error). Experimental result showed that the optimal adjusting coefficients for direct trust, indirect trust, direct distrust, indirect distrust were 0, 1.4287, 1.5, 0.4615 each. This implies that distrust relationships between users are more important than trust ones in recommender systems. From the perspective of recommendation accuracy, SNACF-GA (Avg. MAE = 0.111943), the proposed algorithm which reflects both direct and indirect trust / distrust relationships information, was found to greatly outperform a conventional CF (Avg. MAE = 0.112638). Also, the algorithm showed better recommendation accuracy than the SNACF (Avg. MAE = 0.112209). To confirm whether these differences are statistically significant or not, we applied paired samples t-test. The results from the paired samples t-test presented that the difference between SNACF-GA and conventional CF was statistical significant at the 1% significance level, and the difference between SNACF-GA and SNACF was statistical significant at the 5%. Our study found that the trust/distrust relationship can be important information for improving performance of recommendation algorithms. Especially, distrust relationship information was found to have a greater impact on the performance improvement of CF. This implies that we need to have more attention on distrust (negative) relationships rather than trust (positive) ones when tracking and managing social relationships between users.

A prediction study on the number of emergency patients with ASTHMA according to the concentration of air pollutants (대기오염물질 농도에 따른 천식 응급환자 수 예측 연구)

  • Han Joo Lee;Min Kyu Jee;Cheong Won Kim
    • Journal of Service Research and Studies
    • /
    • v.13 no.1
    • /
    • pp.63-75
    • /
    • 2023
  • Due to the development of industry, interest in air pollutants has increased. Air pollutants have affected various fields such as environmental pollution and global warming. Among them, environmental diseases are one of the fields affected by air pollutants. Air pollutants can affect the human body's skin or respiratory tract due to their small molecular size. As a result, various studies on air pollutants and environmental diseases have been conducted. Asthma, part of an environmental disease, can be life-threatening if symptoms worsen and cause asthma attacks, and in the case of adult asthma, it is difficult to cure once it occurs. Factors that worsen asthma include particulate matter and air pollution. Asthma is an increasing prevalence worldwide. In this paper, we study how air pollutants correlate with the number of emergency room admissions in asthma patients and predict the number of future asthma emergency patients using highly correlated air pollutants. Air pollutants used concentrations of five pollutants: sulfur dioxide(SO2), carbon monoxide(CO), ozone(O3), nitrogen dioxide(NO2), and fine dust(PM10), and environmental diseases used data on the number of hospitalizations of asthma patients in the emergency room. Data on the number of emergency patients of air pollutants and asthma were used for a total of 5 years from January 1, 2013 to December 31, 2017. The model made predictions using two models, Informer and LTSF-Linear, and performance indicators of MAE, MAPE, and RMSE were used to measure the performance of the model. The results were compared by making predictions for both cases including and not including the number of emergency patients. This paper presents air pollutants that improve the model's performance in predicting the number of asthma emergency patients using Informer and LTSF-Linear models.

Visualizing the Results of Opinion Mining from Social Media Contents: Case Study of a Noodle Company (소셜미디어 콘텐츠의 오피니언 마이닝결과 시각화: N라면 사례 분석 연구)

  • Kim, Yoosin;Kwon, Do Young;Jeong, Seung Ryul
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.89-105
    • /
    • 2014
  • After emergence of Internet, social media with highly interactive Web 2.0 applications has provided very user friendly means for consumers and companies to communicate with each other. Users have routinely published contents involving their opinions and interests in social media such as blogs, forums, chatting rooms, and discussion boards, and the contents are released real-time in the Internet. For that reason, many researchers and marketers regard social media contents as the source of information for business analytics to develop business insights, and many studies have reported results on mining business intelligence from Social media content. In particular, opinion mining and sentiment analysis, as a technique to extract, classify, understand, and assess the opinions implicit in text contents, are frequently applied into social media content analysis because it emphasizes determining sentiment polarity and extracting authors' opinions. A number of frameworks, methods, techniques and tools have been presented by these researchers. However, we have found some weaknesses from their methods which are often technically complicated and are not sufficiently user-friendly for helping business decisions and planning. In this study, we attempted to formulate a more comprehensive and practical approach to conduct opinion mining with visual deliverables. First, we described the entire cycle of practical opinion mining using Social media content from the initial data gathering stage to the final presentation session. Our proposed approach to opinion mining consists of four phases: collecting, qualifying, analyzing, and visualizing. In the first phase, analysts have to choose target social media. Each target media requires different ways for analysts to gain access. There are open-API, searching tools, DB2DB interface, purchasing contents, and so son. Second phase is pre-processing to generate useful materials for meaningful analysis. If we do not remove garbage data, results of social media analysis will not provide meaningful and useful business insights. To clean social media data, natural language processing techniques should be applied. The next step is the opinion mining phase where the cleansed social media content set is to be analyzed. The qualified data set includes not only user-generated contents but also content identification information such as creation date, author name, user id, content id, hit counts, review or reply, favorite, etc. Depending on the purpose of the analysis, researchers or data analysts can select a suitable mining tool. Topic extraction and buzz analysis are usually related to market trends analysis, while sentiment analysis is utilized to conduct reputation analysis. There are also various applications, such as stock prediction, product recommendation, sales forecasting, and so on. The last phase is visualization and presentation of analysis results. The major focus and purpose of this phase are to explain results of analysis and help users to comprehend its meaning. Therefore, to the extent possible, deliverables from this phase should be made simple, clear and easy to understand, rather than complex and flashy. To illustrate our approach, we conducted a case study on a leading Korean instant noodle company. We targeted the leading company, NS Food, with 66.5% of market share; the firm has kept No. 1 position in the Korean "Ramen" business for several decades. We collected a total of 11,869 pieces of contents including blogs, forum contents and news articles. After collecting social media content data, we generated instant noodle business specific language resources for data manipulation and analysis using natural language processing. In addition, we tried to classify contents in more detail categories such as marketing features, environment, reputation, etc. In those phase, we used free ware software programs such as TM, KoNLP, ggplot2 and plyr packages in R project. As the result, we presented several useful visualization outputs like domain specific lexicons, volume and sentiment graphs, topic word cloud, heat maps, valence tree map, and other visualized images to provide vivid, full-colored examples using open library software packages of the R project. Business actors can quickly detect areas by a swift glance that are weak, strong, positive, negative, quiet or loud. Heat map is able to explain movement of sentiment or volume in categories and time matrix which shows density of color on time periods. Valence tree map, one of the most comprehensive and holistic visualization models, should be very helpful for analysts and decision makers to quickly understand the "big picture" business situation with a hierarchical structure since tree-map can present buzz volume and sentiment with a visualized result in a certain period. This case study offers real-world business insights from market sensing which would demonstrate to practical-minded business users how they can use these types of results for timely decision making in response to on-going changes in the market. We believe our approach can provide practical and reliable guide to opinion mining with visualized results that are immediately useful, not just in food industry but in other industries as well.

Impact of Semantic Characteristics on Perceived Helpfulness of Online Reviews (온라인 상품평의 내용적 특성이 소비자의 인지된 유용성에 미치는 영향)

  • Park, Yoon-Joo;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.3
    • /
    • pp.29-44
    • /
    • 2017
  • In Internet commerce, consumers are heavily influenced by product reviews written by other users who have already purchased the product. However, as the product reviews accumulate, it takes a lot of time and effort for consumers to individually check the massive number of product reviews. Moreover, product reviews that are written carelessly actually inconvenience consumers. Thus many online vendors provide mechanisms to identify reviews that customers perceive as most helpful (Cao et al. 2011; Mudambi and Schuff 2010). For example, some online retailers, such as Amazon.com and TripAdvisor, allow users to rate the helpfulness of each review, and use this feedback information to rank and re-order them. However, many reviews have only a few feedbacks or no feedback at all, thus making it hard to identify their helpfulness. Also, it takes time to accumulate feedbacks, thus the newly authored reviews do not have enough ones. For example, only 20% of the reviews in Amazon Review Dataset (Mcauley and Leskovec, 2013) have more than 5 reviews (Yan et al, 2014). The purpose of this study is to analyze the factors affecting the usefulness of online product reviews and to derive a forecasting model that selectively provides product reviews that can be helpful to consumers. In order to do this, we extracted the various linguistic, psychological, and perceptual elements included in product reviews by using text-mining techniques and identifying the determinants among these elements that affect the usability of product reviews. In particular, considering that the characteristics of the product reviews and determinants of usability for apparel products (which are experiential products) and electronic products (which are search goods) can differ, the characteristics of the product reviews were compared within each product group and the determinants were established for each. This study used 7,498 apparel product reviews and 106,962 electronic product reviews from Amazon.com. In order to understand a review text, we first extract linguistic and psychological characteristics from review texts such as a word count, the level of emotional tone and analytical thinking embedded in review text using widely adopted text analysis software LIWC (Linguistic Inquiry and Word Count). After then, we explore the descriptive statistics of review text for each category and statistically compare their differences using t-test. Lastly, we regression analysis using the data mining software RapidMiner to find out determinant factors. As a result of comparing and analyzing product review characteristics of electronic products and apparel products, it was found that reviewers used more words as well as longer sentences when writing product reviews for electronic products. As for the content characteristics of the product reviews, it was found that these reviews included many analytic words, carried more clout, and related to the cognitive processes (CogProc) more so than the apparel product reviews, in addition to including many words expressing negative emotions (NegEmo). On the other hand, the apparel product reviews included more personal, authentic, positive emotions (PosEmo) and perceptual processes (Percept) compared to the electronic product reviews. Next, we analyzed the determinants toward the usefulness of the product reviews between the two product groups. As a result, it was found that product reviews with high product ratings from reviewers in both product groups that were perceived as being useful contained a larger number of total words, many expressions involving perceptual processes, and fewer negative emotions. In addition, apparel product reviews with a large number of comparative expressions, a low expertise index, and concise content with fewer words in each sentence were perceived to be useful. In the case of electronic product reviews, those that were analytical with a high expertise index, along with containing many authentic expressions, cognitive processes, and positive emotions (PosEmo) were perceived to be useful. These findings are expected to help consumers effectively identify useful product reviews in the future.

Development of a Predictive Model Describing the Growth of Listeria Monocytogenes in Fresh Cut Vegetable (샐러드용 신선 채소에서의 Listerio monocytogenes 성장예측모델 개발)

  • Cho, Joon-Il;Lee, Soon-Ho;Lim, Ji-Su;Kwak, Hyo-Sun;Hwang, In-Gyun
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.1
    • /
    • pp.25-30
    • /
    • 2011
  • In this study, predictive mathematical models were developed to predict the kinetics of Listeria monocytogenes growth in the mixed fresh-cut vegetables, which is the most popular ready-to-eat food in the world, as a function of temperature (4, 10, 20 and $30^{\circ}C$). At the specified storage temperatures, the primary growth curve fit well ($r^2$=0.916~0.981) with a Gompertz and Baranyi equation to determine the specific growth rate (SGR). The Polynomial model for natural logarithm transformation of the SGR as a function of temperature was obtained by nonlinear regression (Prism, version 4.0, GraphPad Software). As the storage temperature decreased from $30^{\circ}C$ to $4^{\circ}C$, the SGR decreased, respectively. Polynomial model was identified as appropriate secondary model for SGR on the basis of most statistical indices such as mean square error (MSE=0.002718 by Gompertz, 0.055186 by Baranyi), bias factor (Bf=1.050084 by Gompertz, 1.931472 by Baranyi) and accuracy factor (Af=1.160767 by Gompertz, 2.137181 by Baranyi). Results indicate L. monocytogenes growth was affected by temperature mainly, and equation was developed by Gompertz model (-0.1606+$0.0574^*Temp$+$0.0009^*Temp^*Temp$) was more effective than equation was developed by Baranyi model (0.3502-$0.0496^*Temp$+$0.0022^*Temp^*Temp$) for specific growth rate prediction of L.monocytogenes in the mixed fresh-cut vegetables.

Dipyridamole Induced Transient Left Ventricular Dysfunction in the Tl-201 Gated Myocardial SPECT (Tl-201 게이트 심근 SPECT에서 디피리다몰 부하로 유도된 일시적 좌심실 기능이상)

  • Won, Kyoung-Sook
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.3
    • /
    • pp.153-161
    • /
    • 2003
  • Purpose: Recently the occurrence of dipyridamole stress-induced short term stunning was proven and it is reported that Bland Altman analysis by repeated acquisition Tl-201 gated myocardial SPECT (gSPECT) revealed the 95% limit of agreement for LVEF was 10.3 %. The purpose of this study was to investigate the clinical value of dipyridamole induced transient LV dysfunction on Tl-201 gSPECT. Materials and Methods: Total 93 patients were included and coronary angiography was peformed in all patients less than 2 month from gSPECT. The patients with myocardial infarction were excluded. All patients underwent both dipyridamole stress and 4-h redistribution Tl-201 gSPECT. Forty nine patients of total 93 showed normal coronary arteries (Group 1) and the remaining 44 patients had coronary artery disease (Group 2). We compared LV EF, EDV and ESV during post-stress and 4-h redistribution period calculated by gSPECT using quantitative gated SPECT software and the incidence of dipyridamole induced transient LV dysfunction between group 1 and 2. The criteria for transient LV dysfunction was defined more decrease ${\geq}11%$ of LVEF during post-stress than 4-h redistribution according to previous reported Bland Altman analysis. Results: During post-stress and 4-h redistribution average of 3.1% increment in LVEF, 6.6% increment in LVEDV and 0.7% decrement in LVESV were shown after stress in Group 1, whereas 4.1% decrement, 9.7% increment and 7.2% increment in Group 2 respectively. Dipyridamole induced transient LV dysfunction was only detected in group 2 (18.2%) and not in group 1. It was more frequently observed in triple vessel disease and left main disease (31.8%, N=22) than one and two vessel disease (4.5%, N=22). Conclusion: As with Tc-99m myocardial agent post-stress LV dysfunction was observed in dipyridamole Tl-201 gSPECT. It was only detected in CAD and more frequently occurred in multivessel disease. Thus this finding seems to provide additional information in the diagnosis of coronary artery disease and prediction of prognosis.

Effect of Package Size and Pasteurization Temperature on the Quality of Sous Vide Processed Spinach (Sous Vide 가공 시금치의 품질에 미치는 포장단위 및 살균온도의 영향)

  • 장재덕;김기태;이동선
    • Food Science and Preservation
    • /
    • v.11 no.2
    • /
    • pp.195-200
    • /
    • 2004
  • Microbial lethal value and nutrient retention of sous vide processed spinach were evaluated with mathematical model prediction and experimental trial for different package sizes and pasteurization temperatures. The package size covers 500 g, 1 kg and 2 kg, while the pasteurization temperature includes 80, 90 and 97$^{\circ}C$. The basic process scheme consists of filling blanched spinach into barrier plastic film pouch, sealing under vacuum, pasteurization in hot water with over pressure and final cooling to 3$^{\circ}C$. Pasteurization condition was designed based on attainment of 6 decimal inactivation of Listeria monocytogenes at geometric center of the pouch package by heating cycle, which was determined by general method. Heat penetration property of the package and thermal destruction kinetics were combined to estimate the retention of ascorbic acid and chlorophyll. Smaller packages with shorter pasteurization time gave better nutrient retention, physical and chemical qualities. Larger package size was estimated and confirmed experimentally to give higher pasteurization value at center, lower ascorbic acid and chlorophyll contents caused by longer heat process time. Lower pasteurization temperature with longer process time was predicted to give lower pasteurization value at center and lower ascorbic acid, while chlorophyll content was affected little by the temperature. Experimental trial showed better retention of ascorbic acid and chlorophyll for smaller package and higher pasteurization temperature with shorter heating time. The beneficial effect of smaller package and higher pasteurization temperature was also observed in texture, color retention and drip production.

Product Recommender Systems using Multi-Model Ensemble Techniques (다중모형조합기법을 이용한 상품추천시스템)

  • Lee, Yeonjeong;Kim, Kyoung-Jae
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.39-54
    • /
    • 2013
  • Recent explosive increase of electronic commerce provides many advantageous purchase opportunities to customers. In this situation, customers who do not have enough knowledge about their purchases, may accept product recommendations. Product recommender systems automatically reflect user's preference and provide recommendation list to the users. Thus, product recommender system in online shopping store has been known as one of the most popular tools for one-to-one marketing. However, recommender systems which do not properly reflect user's preference cause user's disappointment and waste of time. In this study, we propose a novel recommender system which uses data mining and multi-model ensemble techniques to enhance the recommendation performance through reflecting the precise user's preference. The research data is collected from the real-world online shopping store, which deals products from famous art galleries and museums in Korea. The data initially contain 5759 transaction data, but finally remain 3167 transaction data after deletion of null data. In this study, we transform the categorical variables into dummy variables and exclude outlier data. The proposed model consists of two steps. The first step predicts customers who have high likelihood to purchase products in the online shopping store. In this step, we first use logistic regression, decision trees, and artificial neural networks to predict customers who have high likelihood to purchase products in each product group. We perform above data mining techniques using SAS E-Miner software. In this study, we partition datasets into two sets as modeling and validation sets for the logistic regression and decision trees. We also partition datasets into three sets as training, test, and validation sets for the artificial neural network model. The validation dataset is equal for the all experiments. Then we composite the results of each predictor using the multi-model ensemble techniques such as bagging and bumping. Bagging is the abbreviation of "Bootstrap Aggregation" and it composite outputs from several machine learning techniques for raising the performance and stability of prediction or classification. This technique is special form of the averaging method. Bumping is the abbreviation of "Bootstrap Umbrella of Model Parameter," and it only considers the model which has the lowest error value. The results show that bumping outperforms bagging and the other predictors except for "Poster" product group. For the "Poster" product group, artificial neural network model performs better than the other models. In the second step, we use the market basket analysis to extract association rules for co-purchased products. We can extract thirty one association rules according to values of Lift, Support, and Confidence measure. We set the minimum transaction frequency to support associations as 5%, maximum number of items in an association as 4, and minimum confidence for rule generation as 10%. This study also excludes the extracted association rules below 1 of lift value. We finally get fifteen association rules by excluding duplicate rules. Among the fifteen association rules, eleven rules contain association between products in "Office Supplies" product group, one rules include the association between "Office Supplies" and "Fashion" product groups, and other three rules contain association between "Office Supplies" and "Home Decoration" product groups. Finally, the proposed product recommender systems provides list of recommendations to the proper customers. We test the usability of the proposed system by using prototype and real-world transaction and profile data. For this end, we construct the prototype system by using the ASP, Java Script and Microsoft Access. In addition, we survey about user satisfaction for the recommended product list from the proposed system and the randomly selected product lists. The participants for the survey are 173 persons who use MSN Messenger, Daum Caf$\acute{e}$, and P2P services. We evaluate the user satisfaction using five-scale Likert measure. This study also performs "Paired Sample T-test" for the results of the survey. The results show that the proposed model outperforms the random selection model with 1% statistical significance level. It means that the users satisfied the recommended product list significantly. The results also show that the proposed system may be useful in real-world online shopping store.

Utilization of Smart Farms in Open-field Agriculture Based on Digital Twin (디지털 트윈 기반 노지스마트팜 활용방안)

  • Kim, Sukgu
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2023.04a
    • /
    • pp.7-7
    • /
    • 2023
  • Currently, the main technologies of various fourth industries are big data, the Internet of Things, artificial intelligence, blockchain, mixed reality (MR), and drones. In particular, "digital twin," which has recently become a global technological trend, is a concept of a virtual model that is expressed equally in physical objects and computers. By creating and simulating a Digital twin of software-virtualized assets instead of real physical assets, accurate information about the characteristics of real farming (current state, agricultural productivity, agricultural work scenarios, etc.) can be obtained. This study aims to streamline agricultural work through automatic water management, remote growth forecasting, drone control, and pest forecasting through the operation of an integrated control system by constructing digital twin data on the main production area of the nojinot industry and designing and building a smart farm complex. In addition, it aims to distribute digital environmental control agriculture in Korea that can reduce labor and improve crop productivity by minimizing environmental load through the use of appropriate amounts of fertilizers and pesticides through big data analysis. These open-field agricultural technologies can reduce labor through digital farming and cultivation management, optimize water use and prevent soil pollution in preparation for climate change, and quantitative growth management of open-field crops by securing digital data for the national cultivation environment. It is also a way to directly implement carbon-neutral RED++ activities by improving agricultural productivity. The analysis and prediction of growth status through the acquisition of the acquired high-precision and high-definition image-based crop growth data are very effective in digital farming work management. The Southern Crop Department of the National Institute of Food Science conducted research and development on various types of open-field agricultural smart farms such as underground point and underground drainage. In particular, from this year, commercialization is underway in earnest through the establishment of smart farm facilities and technology distribution for agricultural technology complexes across the country. In this study, we would like to describe the case of establishing the agricultural field that combines digital twin technology and open-field agricultural smart farm technology and future utilization plans.

  • PDF