• Title/Summary/Keyword: Software GPS Receiver

Search Result 110, Processing Time 0.023 seconds

Comparison of Time Offsets by Tropospheric Zenith Path delay models and Mapping Functions in GPS Time Transfer (GPS 시각 전송에서의 대류층 천정지연 모델과 매핑 함수에 따른 시각오프셋 비교)

  • Yu, Dong-Hui
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.6
    • /
    • pp.1317-1322
    • /
    • 2014
  • This paper shows effects of tropospheric delay models and mapping functions among delay features occurred when GPS code signal is transferred for GPS Time Transfer. GPS time transfer uses CGGTTS as the international standard format. For geodetic GPS receiver, ROB has provided r2cggtts software which generates CGGTTS data from RINEX data and all laboratories participated in TAI link use this software and send the CGGTTS results periodically. Though Saastamoinen zenith path model and Niell mapping function are commonly used in space geodesy, r2cggtts software applied NATO zenith path model and CHAO mapping function to the tropospheric delay model. Hence, this paper shows effects of two tropospheric delay models by implementing Saastamoinen model and Niell mapping function for the time offset.

Positional Accuracy Analysis of Permanent GPS Sites Using Precise Point Positioning (정밀절대측위를 이용한 상시관측소 위치정확도 분석)

  • Kang, Joon-Mook;Lee, Yong-Wook;Kim, Min-Gyu;Park, Joon-Kyu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.5
    • /
    • pp.529-536
    • /
    • 2008
  • Researches about 3-D Positioning system using GPS were carried out many-sided by national organs, laboratories, the worlds of science. And most of researches were development of relative positioning algorithm and its applications. Relative positioning has a merit, which can eliminate error in received signals. But its error increase due to distance of baseline. GPS absolute positioning is a method that decides the position independently by the signals from the GPS satellites which are received by a receiver at a certain position. And it is necessary to correct various kinds of error(clock error, effect of ionosphere and troposphere, multi-path etc.). In this study, results of PPP(Precise Point Positioning) used Bernese GPS software was compared with notified coordinates by the NGII(National Geographic Information Institute) in order to analyze the positional accuracy of permanent GPS sites. And the results were compared with results of AUSPOS - Online GPS Processing Service for comparison with relative positioning.

Development of MATLAB GUI Based Software for Generating GPS RINEX Observation File (MATLAB GUI 기반 GPS RINEX 관측 파일 생성 소프트웨어의 개발)

  • Kim, Dong-uk;Yun, Ho;Han, Deok-hwa;Jang, Joo-young;Kee, Chang-don;So, Hyoung-min;Lee, Ki-hoon;Jang, Jae-gyu
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.4
    • /
    • pp.299-304
    • /
    • 2015
  • This paper introduces development of the MATLAB GUI based software for generating GPS RINEX observation file. The purpose of this software is to generate GPS measurements of reference station or dynamic user, which are similar to the real GPS receiver data, accurately and efficiently. This software includes two data generation modes. One is Precision mode which generates GPS measurements as accurate as possible using post-processing data. The other is Real-time mode which generates GPS measurements using GPS error modeling technique. GPS error sources are calculated on the basis of each data generation mode, and L1/L2 pseudorange, L1/L2 carrier phase, and Doppler measurements are produced. These generated GPS measurements are recorded in the RINEX observation version 3.0 file. Using received GPS data at real reference station, we analyzed three items to verify software reliability; measurement bias, rate of change, and noise level. Consequently, RMS error of measurement bias is about 0.7 m, and this verification results demonstrate that our software can generate relatively exact GPS measurements.

Development of the Realtime Ship Position Information System using the GPS (GPS를 이용한 실시간 선박위치정보시스템 개발)

  • 양형선;신철호
    • Journal of the Korean Institute of Navigation
    • /
    • v.24 no.1
    • /
    • pp.57-64
    • /
    • 2000
  • In this paper, we developed the Realtime Ship Position Information System and the software in relation to the system, which consists of the on-board system and the shore-based system. The on-board system is composed a GPS receiver, a computer, and a modem. The shore-based system is composed of a telephone, a modem and a computer. Both systems are operated by the data communication program The system displays automatically the ship's movement on the digital chart by using the ship's position acquired by a GPS receiver via INMARSAT-A communication system. The results presented in many experiments indicate that the system in processing the position data well during the transmission and reception.

  • PDF

Van Test for GAK NM (GPS Adapter Kit Navigation Module) Using High Performance INS (고정밀 INS를 이용한 GAK(GPS Adapter Kit) 항법 모듈의 차량 시험)

  • Oh, Sang-Heon;Son, Seok-Bo;Kwon, Seung-Bok;Shin, Don-Ho;Lee, Sang-Jeong;Park, Chan-Sik;Hwang, Dong-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.260-267
    • /
    • 2007
  • GPS adapter kit (GAK) is a GPS/INS guided range extension system to improve the accuracy and availability of existing dumb bombs. In this paper, a van test result of GPS/INS navigation module (NM) for guided bomb with GAK has been presented. The NM consists of a commercial MEMS IMU, embedded GPS receiver and navigation computer unit (NCU). The GPS receiver of NM was designed to use multiple antennas for satellite visibility and GPS attitude determination. The real-time navigation software was designed by modularized structure to guarantee the maintainability and extensibility. In order to evaluate the performance of the NM, a van test was preformed by using a high performance INS - Honeywell H-726 MAPS(Modular Azimuth Position System).The van test results show that the GAK NM with GPS attitude measurement gives better navigation performance than a conventional GPS/INS integration and good coasting capabilities under jamming environment.

Safe Bike : Secure your Bicycle with this smart Arduino based GPS device

  • Godfrey, Daniel;Song, Mi-Hwa
    • International journal of advanced smart convergence
    • /
    • v.5 no.3
    • /
    • pp.16-26
    • /
    • 2016
  • This proposed project is about a bicycle anti theft devised system which helps people protect the bicycle from theft and helps to track the stolen bicycle's location using a smart phone. Safety bike uses two main devices to keep the bicycle secured, the vibration sensor and GPS sensor. The purpose of this project is to put all these small devices into one well connected system which will help the bicycle owner have more control over the security of his own bicycle. The whole system can be divided into two main parts. The first part is about the hardware development whereby all electronics components are connected via the circuit design using wire wrapping technique. This hardware part includes, a vibrations sensor, a GPS receiver, a toggle switch, LED light, Bluetooth and a buzzer. Wireless Bluetooth signals are used as the means of communication between the smartphone and the microcontroller. The second part is the software part which is being to program and control the whole system. The program is written using MikroBasic, a full-featured Basic compiler for microcontroller based systems. In conclusion, this system is designed to enable user to have control in securing his/her bicycle also being able to find and locate it at any time using GPS receiver and mobile android application.

Effects of Tropospheric Delay Models for GPS Time Transfer (GPS 시각 전송에서의 대류층 지연 모델 영향 비교)

  • Yu, Donghui
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.139-141
    • /
    • 2014
  • This paper shows effects of tropospheric delay models among delay features occurred when GPS code signal is transferred for GPS Time Transfer. GPS time transfer uses CGGTTS as the international standard format. For geodetic GPS receiver, ROB has provided r2cggtts software which generates CGGTTS data from RINEX data and all laboratories participated in TAI link uses the software and send the CGGTTS results periodically. Though Saastamoinen model and Niell mapping function are commonly used in space geodesy, r2cggtts software applied NATO model and CHAO mapping function to the tropospheric delay model. Hence, this paper shows effects of two tropospheric delay models implementing Saastamoinen model and Niell mapping function for the time offset.

  • PDF

GPS 신호 획득 과정에서의 C/A 코드 반복 횟수 추정 알고리즘 설계

  • Yu, Won-Jae;Choe, Gwang-Ho;Im, Jun-Hu;Kim, Ra-U;So, Hyeong-Min;Lee, Hyeong-Geun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.10a
    • /
    • pp.270-272
    • /
    • 2015
  • 선박의 항해 도중 GPS 위성을 이용하여 위치를 추정하는 방법이 널리 사용되고 있다. 본 연구에서는 재밍으로 인하여 항해 중에 간헐적인 GPS 신호의 획득은 가능하나 지속적인 신호 추적이 불가하여 GPS 위성의 코드 위상 측정치만 얻을 수 있는 상황을 가정하였다. 동 시간대의 기준국에서 수신한 항법 메시지와 신호 획득 과정에서 측정된 코드 위상 만을 이용하여 GPS C/A 코드의 반복 횟수를 정확히 추정하고 대략적인 위치 해를 계산하는 알고리즘을 개발하였다.

  • PDF

The Analysis of the GPS Data Processing of the NGII CORS by Bernese and TGO (Bernese와 TGO에 의한 국내 GPS 상시관측소 자료처리 결과 분석)

  • Kim, Ji-Woon;Kwon, Jay-Hyoun;Lee, Ji-Sun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.6
    • /
    • pp.549-559
    • /
    • 2008
  • This study verified the limitations of commercial GPS data processing software and the applicability on precise positioning through comparing the processing results between Bernese and TGO under various conditions. To achieve the goal, we selected three nationwide station data and two smaller local data to constitute networks. By using Bernese and TGO, those networks are processed through the baseline analysis and the network adjustment. The comparative analysis was carried out, in terms of software, baseline length and network scale, observation duration, and number of fixed points. In the comparison between softwares, the scientific software was excellent in accuracy. It was confirmed that, as GPS-related technology is developed, the performance of the receiver was enhanced. And, in parallel with this, even the functionalities of the commercial software were tremendously enhanced. The difference, however, in result between the scientific and commercial software are still exist even if it is not big. Therefore, this study confirms that the scientific software should be used when the most precise position is necessary to be computed, especially if baseline vectors are big.

Analysis of GPS Signal Acquisition Performance

  • Li, Xiaofan;Manandhar, Dinesh;Shibasaki, Ryosuke
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.229-234
    • /
    • 2006
  • Acquisition is to detect the presence of the GPS signal. Once the signal is detected, the estimated frequency and code phase are passed to a tracking loop to demodulate the navigation data. In order to detect the weak signal, multiple length of data integration is always needed. In this paper, we present five different acquisition approaches based on circular correlation and Fast Fourier Transform (FFT), using coherent as well as non-coherent integration techniques for the multiple length of collected GPS satellite signal. Moreover a general approach of determining the acquisition threshold is introduced based on noise distribution which has been proved effective, and independent of the hardware. In the end of this paper, the processing speed and acquisition gain of each method are illustrated, compared, and analyzed. The results show that coherent approach is much more time consuming compared to noncoherent approaches, and in the case of multiple length of data integration from 2ms to 8ms, the processing times consumed by the fastest non-coherent acquisition method are only 25.87% to 1.52% in a single search, and 34.76% to 1.06% in a global search of those in the coherent acquisition. However, coherent acquisition also demonstrates its better performance in the acquisition gain, and in the case of 8ms of data integration it is 4.23 to 4.41 dB higher than that in the non-coherent approaches. Finally, an applicable scheme of combining coherent and non-coherent acquisition approaches in the development of a real-time Software GPS receiver in the University of Tokyo is provided.

  • PDF