• Title/Summary/Keyword: Software Defined Radar

Search Result 7, Processing Time 0.024 seconds

Modern Software Defined Radar (SDR) Technology and Its Trends

  • Kwag, Young-Kil;Jung, Jung-Soo;Woo, In-Sang;Park, Myeong-Seok
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.4
    • /
    • pp.321-328
    • /
    • 2014
  • Software defined radar (SDR) is a multi-purpose radar system where most of the hardware processing is performed by software. This paper introduces a concept and technology trends of software defined radar, and addresses the advantages and limitations of the current SDR radar systems. For the advanced SDR concept, the KAU SDR Model (KSM) is presented for the multimode and multiband radar system operating in S-, X-, and K-bands. This SDR consists of a replaceable multiband antenna and RF hardware, common digital processor module with multimode, and open software platform based on MATLAB and LabVIEW. The new concept of the SDR radar can be useful in various applications of the education, traffic monitoring and safety, security, and surveillance depending on the various radar environments.

Development of Multi-Band Multi-Mode SDR Radar Platform (다중 대역 다중 모드 SDR 레이다 플랫폼 개발)

  • Kwag, Young-Kil;Woo, In-Sang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.11
    • /
    • pp.949-958
    • /
    • 2016
  • This paper presents the new development result of the multi-band, the multi-mode SDR(Software Defined Radar) platform. The SDR hardware platform is implemented by using the reconfigurable multi-band RF transceiver and antenna modules of S, X, and K-bands, and a programmable signal processing module. The SDR software platform is implemented by using the multi-mode waveform generation of CW, Pulse, FMCW, and LFM Chirp as well as the adaptable algorithm library of signal processing and open API software modules. Through the integrated test of the SDR platform, the operational performance was verified in real-time. Also, through the field-application test, the ground target and air-vehicle drone target were successfully detected and their test results were presented.

Miniaturization of SIW-Based Linearly Polarized Slot Antennas for Software-Defined Radar

  • Han, Jun Yong;Yoon, Seong Sik;Lee, Jae Wook
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.4
    • /
    • pp.248-253
    • /
    • 2016
  • Two substrate integrated waveguide (SIW)-based antennas for the application of software-defined radar are proposed and investigated herein. It is usually well known that SIWs are easily integrated, lightweight, have low insertion loss, and low interference levels compared to conventional microstrip structures. The primary function of the proposed antennas is to transmit continuous waves for indoor motion detection, with the lowest amount of loss and an appropriate amount of gain. Moreover, the results of this study show that the size of the antenna can be reduced significantly (i.e., by about 40%) by applying a meander line structure. The operating frequencies of the proposed antennas are both within the industrial, scientific, and medical band (i.e., 2.4-2.4835 GHz). Measured results of return loss are -16 dB and -20 dB at 2.435 GHz and 2.43 GHz, respectively, and the measured gain is 8.2 dBi and 5.5 dBi, respectively. Antenna design and verification are undertaken through commercially available full electromagnetic software.

SIW-Based Linearly Polarized S-Band Antenna for SDR (선형편파를 갖는 S-대역 SDR용 SIW 안테나 설계)

  • Han, Jun-Yong;Yoon, Seong-Sik;Lee, Jae-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.2
    • /
    • pp.216-219
    • /
    • 2016
  • In this paper, the SIW(Substrate Integrated Waveguide)-based feeding antenna for the application of SDR(Software Defined Radar) is designed and manufactured. It is usually well-known that SIWs are easily integrated on PCB and have low transmission loss toward high powered input signal. Also, it is recommended that SIWs are strongly immunized to Electromagnetic Interferences(EMI). In particular, the manufactured antennas are loaded on the USRP(Universal Software Radio Peripheral) platform and employed to detect target RCS as an experiment in this paper. The operating frequency of the proposed antenna is in ISM(Industrial, Scientific and Medical) band(2.4~2.48 GHz) and the measured gain is over 8 dBi at 2.44 GHz.

LFM Radar Implemented in SDR Architecture (SDR 기반의 LFM 레이다 설계 및 구현)

  • Yoon, Jae-Hyuk;Yoo, Seung-Oh;Lee, Dong-Ju;Ye, Sung-Hyuck
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.4
    • /
    • pp.308-315
    • /
    • 2018
  • In this paper, we present the basic design results for high-resolution radar development at S-band frequency that can precisely measure the miss distance between two targets. The basic system requirement is proposed for the design of a 3.5 GHz linear frequency-modulated (LFM) radar with maximum detection distance and distance resolution of 2 km and 1 m, respectively, and the specifications of each module are determined using the radar equation. Our calculations revealed a signal-to-noise ratio ${\geq}30dB$ with a bandwidth of 150 MHz, transmission power of 43 dBm for the power amplifier, gain of 26 dBi for the antenna, noise figure of 8 dB, and radar cross-section of $1m^2$ at a target distance of 2 km from the radar. Based on the calculation results and the theory and method of LFM radar design, the hardware was designed using software defined radar technology. The results of the subsequent field test are presented that prove that the designed radar system satisfies the requirements.

창조 ICT R&D 동향 -생활전파 레이다 센서 SDR 플랫폼 기술 개발

  • Gwak, Yeong-Gil
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.1
    • /
    • pp.63-64
    • /
    • 2015
  • Software-Defined Radar는 기본 레이다 하드웨어의 기능을 소프트웨어로 구현할 수 있게 하여 하드웨어의 재구성이 용이하므로 다양한 활용 목적에 따라 레이다 기능을 다양화할 수 있고, 개발기간과 비용을 줄일 수 있는 장점이 있다. 특히 소프트웨어의 유연성이 높아 레이다 주변 환경에 따라 레이다 신호처리 알고리듬을 쉽게 적용할 수 있다. 본 기고에서는 다중대역에서 다중모드로 운용할 수 있는 소프트웨어 기반의 레이다 플랫폼 개발에 대한 기술 배경과 개발 내용을 설명하였고, 다양한 활용 전망을 살펴보았다.

  • PDF

Requirements of processing parameters for Multi-Satellites SAR Data Focusing Software

  • Kwak Sunghee;Kim Kwang Yong;Lee Young-Ran;Shin Dongseok;Jeong Soo;Kim Kyung-Ok
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.401-404
    • /
    • 2004
  • SAR (Synthetic Aperture Radar) signal data need a focusing procedure to make the information available to the user. In recent SAR systems, various sensing modes and mission operations are applied to acquire high-resolution SAR images. Therefore, in order to develop generalized focusing software for multi-satellites, a regularized parameter configuration that sufficiently represents sensor and platform characteristics of the SAR system is required. The objective of this paper is to introduce the consideration of parameter definition for developing a generalized SAR processor and to discuss the flexibility and extensibility of defined parameters. The proposed parameter configuration can be applied to a SAR processor. Experiments based on real data will show the suitability of the suggested processing parameters.

  • PDF