본 연구에서는 소프트웨어 아키텍처 복원을 위한 계층적 클러스터링(Clustering) 결과를 정량적으로 평가 할 수 있는 비교 메트릭(Metric)을 제시한다. 소프트웨어 클러스터링의 정량적 평가는 소프트웨어의 구조적 변화에 대한 이해를 돕는 척도를 제시하는 연구이다. 이를 위해 생물정보학에서 상호유전 형질 분석에 사용하는 분기점(Split) 개념을 소프트웨어 아키텍처 분석에 적용한다.
본 논문은 소프트웨어 클러스터링 기법과 커뮤니티 검출 기법의 비교를 통하여 아키텍쳐 모듈 복원 프로세스에 커뮤니티 검출 알고리즘의 적용가능성을 제시한다. 또한, 대표적인 클러스터링 알고리즘과 커뮤니티 검출 알고리즘의 값과 나눠진 모듈간의 상관관계와 차이점을 분석한다. 이를 통하여 커뮤니티 검출 알고리즘이 소프트웨어 아키텍쳐 모듈 뷰 복원에 활용되어질 수 있다는 몇 가지 근거를 제시하였고, 기존의 클러스터링 결과와 커뮤니티 알고리즘의 결과치를 비교함으로써, 서로의 결과 데이터가 어떠한 연관성을 가지는지 제시하였다.
Summary: This paper analyzes Indian software industry in the perspective of innovation cluster. The research shows that the software industry has been following an upstream clustering process, where the major value activity is expanding from low value product/services to high value product/services. The growth of software industry could be successful because there was appropriate initial condition of Bangalore, such as the availability of high qualified human resources, excellent research institutes, small high-tech companies. The role of government was helpful for the late growth of software industry but not a critical factor for the initial development of the S/W cluster. It is suggested that government should consider the initial condition of a concerned location critically to implement a cluster-type innovation policy.
리엔지니어링에서 기존 소프트웨어 시스템의 환경변화에 따라 대부분 논리적 실행을 중심으로 집단화를 실행해왔으나 본 논문에서는 기존 소스 프로그램을 중심으로 각 모듈간의 정보공유측면에서 효율적으로 집단화할 수 있는 방안을 제안하였다. 정보고유를 이용한 관련 모듈들의 집단화를 위해서 모듈 집단간 휴리스틱 측정방법을 근간으로 본 논문에서 제안한 유사성 및 단일성 알고리즘을 이용한 측정을 한 후 그 결과를 평가하였다. 이를 통해 모듈 및 프로시져의 관련성을 중심으로 관련 모듈 및 프로시져의 정리 및 집단화를 유도할 수 있었다. 소프트웨어 시스템의 환경변화에 따른 기존 시스템을 정보공유를 중심으로 집단화함으로써 과적으로 소프트웨어 시스템을 재구축할 수 있는 방법론을 제시하였으며, 그 구현 가능성을 실제 예를 통해서 보였다.
Multiple rotation-based transformation (MRBT) was introduced recently for mitigating the apriori-knowledge independent component analysis (AK-ICA) attack on rotation-based transformation (RBT), which is used for privacy-preserving data clustering. MRBT is shown to mitigate the AK-ICA attack but at the expense of data utility by not enabling conventional clustering. In this paper, we extend the MRBT scheme and introduce an augmented rotation-based transformation (ARBT) scheme that utilizes linearity of transformation and that both mitigates the AK-ICA attack and enables conventional clustering on data subsets transformed using the MRBT. In order to demonstrate the computational feasibility aspect of ARBT along with RBT and MRBT, we develop a toolkit and use it to empirically compare the different schemes of privacy-preserving data clustering based on data transformation in terms of their overhead and privacy.
The rotation-based transformation (RBT) for privacy preserving data mining is vulnerable to the independent component analysis (ICA) attack. This paper introduces a modified multiple-rotation-based transformation technique for special mining applications, mitigating the ICA attack while maintaining the advantages of the RBT.
Wireless Sensor Networks(WSNs) are applied to many monitoring applications. Present sensor nodes can perform many functions at the same time and contain complex software. During the lifetime of sensor nodes, they are required to reprogram their software because of their new functions, software, software bug fixes. The nodes are inaccessible physically or it is very difficult to upgrade their software by one by one. To upgrade the software of sensor nodes in WSNs remotely, this paper presents an energy efficient method by selecting an optimal relay node. The CHR(Cluster Head Relay) method is compared with SPIN and RANDOM method. Three methods are simulated in NS-2 with the same environmental parameters. Simulation results show that CHR shows faster update time and less power consumption compared with other two methods.
This paper proposes a hybrid recommendation system (RS) model that overcomes the limitations of traditional approaches such as data sparsity, cold start, and scalability by combining collaborative filtering and context-aware techniques. The objective of this model is to enhance the accuracy of recommendations and provide personalized suggestions by leveraging the strengths of collaborative filtering and incorporating user context features to capture their preferences and behavior more effectively. The approach utilizes a novel method that combines contextual attributes with the original user-item rating matrix of CF-based algorithms. Furthermore, we integrate k-mean++ clustering to group users with similar preferences and finally recommend items that have highly rated by other users in the same cluster. The process of partitioning is the use of the rating matrix into clusters based on contextual information offers several advantages. First, it bypasses of the computations over the entire data, reducing runtime and improving scalability. Second, the partitioned clusters hold similar ratings, which can produce greater impacts on each other, leading to more accurate recommendations and providing flexibility in the clustering process. keywords: Context-aware Recommendation, Collaborative Filtering, Kmean++ Clustering.
본 연구에서 우리는 모듈의 의존관계와 저자 엔트로피(Author Entropy) 정보를 이용하여 소프트웨어 모듈-뷰를 복원하는 새로운 소프트웨어 클러스터링 기법을 제안한다. 해당 기법은 우선 구조적 및 논리적 의존관계 정보를 기준으로 소프트웨어 모듈을 클러스터링한 후, 모듈 별 저자 엔트로피를 이용하여 일부 선택된 모듈을 클러스터 결과로부터 이전한다. 제안된 기법의 평가를 위해 참(ground-truth) 모듈-뷰가 알려진 오픈소스 프로젝트들에 적용하여 MoJoFM 값을 구하였다. 이와 함께 기존에 연구된 모듈-뷰 복원 기법들의 MoJoFM값과 비교하여, 제안된 기법이 소프트웨어 모듈-뷰 복원에 보다 효과적임을 보였다.
본 논문에서는 개체를 자유롭게 설명하고 효율적으로 클러스터링을 수행 할 수 있는 개념 그래프 기반의 새로운 클러스터링 체계 Clustering scheme Based on Conceptual graphs(CBC)를 제안한다. 개념적 클러스터링은 기계 학습 기술 중 하나이다. 개념 클러스터링에서 개체 간의 유사성은 개체의 의미나 환경을 고려하지 않고 유사성을 결정하는 일반적인 클러스터링 체계와 달리 개념 구성원의 자격에 따라 결정된다. 이 논문에서는 다양한 개체를 개념 그래프로 자유롭게 설명하여 효율적인 개념 클러스터링을 수행 할 수 있는 새로운 개념 클러스터링 체계인 CBC를 소개한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.