• Title/Summary/Keyword: Softening temperature

Search Result 405, Processing Time 0.027 seconds

Comparison Study of Prediction Models for Hot Deformation Behavior of Tool Steel (공구강의 고온 변형 거동 예측을 위한 모델 비교 연구)

  • Kim, Keunhak;Park, Dongsung;Jun, Joong-Hwan;Lee, Min-Ha;Lee, Seok-Jae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.4
    • /
    • pp.180-186
    • /
    • 2018
  • High temperature flow behaviors of Fe-Cr-Mo-V-W-C tool steel were investigated using isothermal compression tests on a Gleeble simulator. The compressive test temperature was varied from 850 to $1,150^{\circ}C$ with the strain rate ranges of 0.05 and $10s^{-1}$. The maximum height reduction was 45%. The dynamic softening related to the dynamic recrystallization was observed during hot deformation. The constitutive model based on Arrhenius-typed equation with the Zener-Hollomon parameter was proposed to simulate the hot deformation behavior of Fe-Cr-Mo-V-W-C steel. An artificial neural network (ANN) model was also developed to compare with the constitutive model. It was concluded that the ANN model showed more accurate prediction compared with the constitutive model for describing the hot compressive behavior of Fe-Cr-Mo-V-W-C steel.

Adiabatic Analysis of 1180MPa Advanced High Strength Steel by Impact Weight (충격하중에 의한 1180MPa급 초고강도강의 단열해석)

  • Kim, Kun-Woo;Lee, Jae-Wook;Yang, Min-Seok;Lee, Seong-Yeop;Kim, Da-Hye;Lee, Jae-Jin;Mun, Ji-Hoon;Park, Ji-Won
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.8
    • /
    • pp.93-98
    • /
    • 2022
  • Adiabatic blanking is a method to improve productivity through an autocatalytic cycle that occurs repeatedly through plastic deformation and thermal softening caused by impact energy. In this study, an axisymmetric analysis model comprising a punch, die, holder, and specimen was developed to confirm the temperature and deformation characteristics caused by an impact load. Through this, the impact energy, diameter of the punch, gap between the punch and die, and the effect of the fillet were analyzed. Because this process occurs in a very short time, adiabatic analysis can be performed using the explicit time-integration method. The analysis, confirmed that it is necessary to design a structure capable of increasing the local temperature and plastic deformation by controlling the impact energy, working area, gap, and the fillet.

Effect of Fermented Rice Bran on Rheological Properties of White Bread Dough (발효쌀겨의 첨가에 따른 식빵 반죽의 물리적 특성)

  • Park, Hyun-Sil;Han, Gi-Dong
    • Journal of the Korean Society of Food Culture
    • /
    • v.25 no.1
    • /
    • pp.82-90
    • /
    • 2010
  • In this study, the rheological properties of doughs blended with 5% to 20% fermented rice bran (FRB) were investigated using farinographs, amylographs, extensographs, and SEM. In the farinograph analysis, the water absorption decreased and the replacement ratio of FRB increased over the time of development of the dough. The stability time of the dough was shortened, and the degree of softening decreased with added volume of FRB. The amylograph analysis showed that the temperature at the beginning of gelatinization showed a tendency to increase with increasing replacement ratio of FRB, but the gelatinization temperature showed no significant difference between the FRB-added groups and control group. The extensograph analysis showed that when the replacement ratio of FRB was over 10%, the extension of the dough decreased while the resistance was increased. In the SEM analysis, the added dough with less than 10% FRB had similar characteristics in gluten matrix and gas bubbles to those of the control of wheat flour alone. It was concluded that an added FRB volume of below 10% is most suitable for bread making.

Small-scale effects on wave propagation in curved nanobeams subjected to thermal loadings based on NSGT

  • Ibrahim Ghoytasi;Reza Naghdabadi
    • Advances in nano research
    • /
    • v.16 no.2
    • /
    • pp.187-200
    • /
    • 2024
  • This study focuses on wave propagation analysis in the curved nanobeam exposed to different thermal loadings based on the Nonlocal Strain Gradient Theory (NSGT). Mechanical properties of the constitutive materials are assumed to be temperature-dependent and functionally graded. For modeling, the governing equations are derived using Hamilton's principle. Using the proposed model, the effects of small-scale, geometrical, and thermo-mechanical parameters on the dynamic behavior of the curved nanobeam are studied. A small-scale parameter, Z, is taken into account that collectively represents the strain gradient and the nonlocal parameters. When Z<1 or Z>1, the phase velocity decreases/increases, and the stiffness-softening/hardening phenomenon occurs in the curved nanobeam. Accordingly, the phase velocity depends more on the strain gradient parameter rather than the nonlocal parameter. As the arc angle increases, more variations in the phase velocity emerge in small wavenumbers. Furthermore, an increase of ∆T causes a decrease in the phase velocity, mostly in the case of uniform temperature rise rather than heat conduction. For verification, the results are compared with those available for the straight nanobeam in the previous studies. It is believed that the findings will be helpful for different applications of curved nanostructures used in nano-devices.

A Study on Dynamic and Static Recrystallization Behaviors and Microstructure Evolution Prediction of a Die Steel (금형강의 동적 및 정적 재결정 거동과 미세조직 변화 예측에 관한 연구)

  • 정호승;조종래;차도진;배원병
    • Transactions of Materials Processing
    • /
    • v.10 no.4
    • /
    • pp.338-346
    • /
    • 2001
  • Evaluation of microstructural changes is important for process control during open die forging of heavy ingots. The control of forging parameters, such as shape of the dies, reduction, temperature and sequence of passes, is to maximize the forging effects and to minimize inhomogeneities of mechanical properties. The hot working die steel is produced by using the multistage open die forging. The structure is altered during forging by subsequent Precesses of plastic deformation, recrystallization and grain growth. A numerical analysis using an rigid visco-plastic finite element model was performed to predict microstructural evolution of hot working die steel.

  • PDF

A study on the stress dependence of diffusion coefficient at the elevated tenperature and the structural characterictics of 12% Cr rotor steel. (12% Cr강의 고온 확산계수의 응력의존성과 조직의 특성에 관한 연구)

  • 장윤석;김태형
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.39-47
    • /
    • 1997
  • Creep rate the elevated temperature is known to be controller by the softening process of microstructure especially in the solid solution alloys such as 125 Cr rotor steel. The change of structure is a decreasing process of the free energy of the state including stress, diffusivity of the material, and tmeperature. This study shows that diffusion coefficient, D of 12% Cr rotor steel at 953K with 74.8 MPa is 1.084~3.140*$10^{15}mm^2sec^1$ compared to $1.658*10^{24}mm^2sec^1$at 963K without stress. During creep, the growth of martensite laths accelerates the diffusion coefficient under stress due to incoherency of interface between carbides and matrix.

  • PDF

Fabrication of Pb Free Solder Glass for Electronic Packaging Application (전자 패키징용 Pb Free 저융점 유리의 제조)

  • 최승철;이창식;유재륜;정경원
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.7
    • /
    • pp.628-633
    • /
    • 2001
  • 전자 패키징에 적용 가능한 저융점 유리 중에서 납성분이 포함되어 있지 않는 Bi계 유리의 연구를 행하였다. 기판과의 일체화를 위한 유리의 응용으로, 소자와의 반응 억제와 열응력 완화를 위해 유리의 저융점화 및 열팽창계수를 제어하였다. 본 연구에서 제조된 Bi계 유리는 DTA와 TMA의 열분석을 통해 5$50^{\circ}C$ 부근에서 연화점이 있고, 열팽창계수는 7.52~12.09$\times$$10^{-6}$/$^{\circ}C$의 범위였으며, 비유전율은 9~13이었다. 본 연구의 납성분을 포함되어 있지 않는 유리조성은 우수한 내산성을 나타내었다.

  • PDF

Prediction of Low Cycle Fatigue Life for Inconel 617 using Strain Energy Method (변형률 에너지법을 이용한 Inconel 617의 저주기피로 수명 예측)

  • Kim, Duck-Hoi;Kim, Ki-Gwang;Kim, Jae-Hoon;Lee, Young-Shin;Park, Won-Sik
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.285-290
    • /
    • 2004
  • Low cycle fatigue tests are performed on the Inconel 617 that be used for a hot gas casing. The relation between strain energy density and numbers of cycles to failure is examined in order to predict the low cycle fatigue life of Inconel 617. The life predicted by the strain energy method is found to coincide with experimental data and results obtained from the Coffin-Manson method. Also the cyclic behavior of Inconel 617 is characterized by cyclic hardening with increasing number of cycle at room temperature.

  • PDF

Modeling of Coking Process in a Coke Oven (코크스 공정에서의 열유동 현상 모델링)

  • Yang, Kwang-Heok;Yang, Won;Choi, Sang-Min
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1184-1189
    • /
    • 2004
  • Coking process is the thermal decomposition of bituminous coal with final temperature of about $900^{\circ}C$ Because coke plays important roles in ironmaking process in a blast furnace it's essential for developing modeling of coke oven. In this study, An unsteady 2-dimesional model is proposed to simulate coking process in a coke oven. In this model, gas and solid phase are assumed homogeneous continnum and solid bed is assumed as porous media . The model contains governing equations for the solid phase and the gas phase. Complicated phenomena such as swelling, softening, resolidification and shrinkage are neglected and mass loss by drying and devolatilization is reflected by generation of internal pores. Drying, devolatilization, heat transfer and generation of internal pores are also reflected in source terms. Calulated results are compared with experimental data

  • PDF

An Overstress Model for Non-proportional Loading of Nylon 66 (Nylon 66의 무비례 하중에 대한 과응력 모델)

  • Ho, Gwang-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.2056-2061
    • /
    • 2001
  • Non-proportional loading tests of Nylon 66 at room temperature exhibit path dependent behavior and plasticity-relaxation interactions. The uniaxial formulation of the viscoplasticity theory based on overstress (VBO), which has been used to reproduce the nonlinear strain rate sensitivity, relaxation, significant recovery and cyclic softening behaviors of Nylon 66, is extended to three-dimensions to predict the response in strain-controlled, comer-path tests. VBO consists of a flow law that is easily written for either the stress or the strain as the independent variable. The flow law depends on the overstress, the difference between the stress and the equilibrium stress that is a state variable in VBO. The evolution law of the equilibrium stress in turn contains two additional state variables, the kinematic stress and the isotropic stress. The simulations show that the constitutive model is competent at modeling the deformation behavior of Nylon 66 and other solid polymers.