• Title/Summary/Keyword: Soft vacuum

Search Result 167, Processing Time 0.03 seconds

Soft X-ray Nano-spectroscopy for Electronic Structures of Transition Metal Oxide Nano-structures

  • Oshima, Masaharu
    • Applied Science and Convergence Technology
    • /
    • v.23 no.6
    • /
    • pp.317-327
    • /
    • 2014
  • In order to develop nano-devices with much lower power consumption for beyond-CMOS applications, the fundamental understanding and precise control of the electronic properties of ultrathin transition metal oxide (TMO) films are strongly required. The metal-insulator transition (MIT) is not only an important issue in solid state physics, but also a useful phenomenon for device applications like switching or memory devices. For potential use in such application, the electronic structures of MIT, observed for TMO nano-structures, have been investigated using a synchrotron radiation angle-resolved photoelectron spectroscopy system combined with a laser molecular beam epitaxy chamber and a scanning photoelectron microscopy system with 70 nm spatial resolution. In this review article, electronic structures revealed by soft X-ray nano-spectroscopy are presented for i) polarity-dependent MIT and thickness-dependent MIT of TMO ultrathin films of $LaAlO_3/SrTiO_3$ and $SrVO_3/SrTiO_3$, respectively, and ii) electric field-induced MIT of TMO nano-structures showing resistance switching behaviors due to interfacial redox reactions and/or filamentary path formation. These electronic structures have been successfully correlated with the electrical properties of nano-structured films and nano-devices.

Nanotransfer Printing for Large-Scale Integrated Nanopatterns of Various Single-Crystal Organic Materials

  • Baek, Jang-Mi;Park, Gyeong-Seon;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.361.2-361.2
    • /
    • 2016
  • The manufacture of organic electronic circuits requires effective heterogeneous integration of different nanoscale organic materials with uniform morphology and crystallinity in a desired arrangement on a substrate. Herein, we present a new direct printing method, which enables monolithic integration of crystalline nanowire arrays with a diverse range of organic materials. In this method, we use a nanoscale patterned soft mold, which contains an assembly of simple nanoline patterns but, in combination with droplet of various organic inks, can produce a large-scale integration of various nanopatterns with multiple kinds of organic materials. The morphology of organic nanowires can controlled by nanoconfinement in nanoline of mold. And mutual alignment of nanopatterns can be controlled by adjusting the ink droplet size, number of droplets, ink deposition locations.

  • PDF

액상씨드의 열처리조건에 따라 합성된 나노와이어의 특성변화

  • Kim, Seong-Hyeon;No, Im-Jun;Lee, Gyeong-Il;Sin, Baek-Gyun;Kim, Seon-Min;Kim, Jong-Hyeon;Jo, Jin-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.275-275
    • /
    • 2010
  • 나노선의 합성을 위해 필요한 씨드는 기상증착에 경우 값비싼 공정 비용이 요구되지만 액상의 경우 저렴하고 공정이 단순하며 단시간에 공정이 용의하고 대면적이 가능하다는 장점을 가지고 있다. 우리는 zinc acetate, ethylene glycol monoethylethe(C3H8O2), Monoethanolamine을 일정한 비율로 혼합하여 ZnO 나노와이어 합성에 필요한 액상씨드를 만든 후 이것을 기판위에 증착하기 위해 수차례에 걸쳐 스핀코팅을 하였다. 스핀코팅후 퍼니스와 핫플레이트를 이용하여 Soft bake, Hard bake 공정을 통해 각각 열처리 한후 XRD 를 통한 결정성과 방향성 그리고 AFM을 통한 표면거칠기를 관찰하였고 또한 수열합성법을 통하여 제작한 씨드를 기반으로 하는 ZnO 나노와이어를 합성하여 각각의 열처리 조건에 따른 나노와이어의 특성변화를 관찰하였고 향후 나노기반 소자의 적용가능성을 확인하였다.

  • PDF

Soft X-ray Spectroscopy of ClAlPc/Pentacene/ITO Interfaces: Role of ClAlPc on Energetic Band Alignment

  • Kim, Min-Su;Heo, Na-Ri;Lee, Sang-Ho;Jo, Sang-Wan;Smith, Kevin E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.190.1-190.1
    • /
    • 2014
  • The interfacial electronic structure of a bilayer of chloroaluminum phthalocyanine (ClAlPc) and pentacene grown on indium tin oxide (ITO) has been studied using synchrotron radiation-excited photoelectron spectroscopy. The energy difference between the highest occupied molecular orbital (HOMO) level of the pentacene layer and the lowest unoccupied molecular orbital (LUMO) level of the ClAlPc layer (EDHOMO - EALUMO) was determined and compared with that of C60/pentacene bilayers. The EDHOMO - EALUMO of a heterojunction with ClAlPc was found to be 1.4 eV, while that with C60 was 1.0 eV. This difference is discussed in terms of the difference of the ionization energy of each acceptor materials. We also obtained the complete energy level diagrams of ClAlPc/pentacene/ITO and C60/pentacene/ITO, respectively.

  • PDF

Feed Gas Dependent Nonthermal Plasma Interaction with Bio-organisms

  • Baik, Ku-Youn;Park, Gyung-Soon;Kim, Yong-Hee;Yoo, Young-Hyo;Lee, Jin-Young;Choi, Eun-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.174-174
    • /
    • 2012
  • The nature of feed gas is essential for the active species formed in the nonthermal plasma jets, which would induce various biological phenomena. We investigated the different physiological effects of atmospheric pressure soft-plasma jets on Esherichia coli and blood cells according to the feed gas. Cell death rate, growth curve, membrane molecular changes and induced genes were examined. The relationship between cellular reactions and active species generated by discharge will be discussed.

  • PDF

Fabrication of Beta-phase Poly(9,9-dioctylfluorene) Nanowire Arrays for Polymer Light-Emitting Diode Using Direct Printing Method

  • Baek, Jang-Mi;Lee, Gi-Seok;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.560-560
    • /
    • 2012
  • We report a one-step fabrication method of Poly(9,9-dioctylfluorene) (PFO) nanowire array with pronounced ${\beta}$-Phase. We use liquid-bridge-mediated nanotransfer molding (LB-nTM) which is a new direct nano-patterning method based on the direct transfer of various materials from a mold to a substrate via liquid layer. The formation of the ${\beta}$-phase morphology in the resulting PFO nanowire array was evidenced by the presence of an absorption peak at 435nm. With the collection polarizer oriented parallel to the wire long axis, the PL emission was most intense and an emission dichroic ratio, DRE, of 3.7 was determined. The nanowire array have been investigated by scanning electron microscopy (SEM). Also, we simply fabricated structure of device of ITO/PFO nanowire arrays/Al and the electroluminescence spectra were recorded at various applied voltage.

  • PDF

Physical properties of ion-beam mixed Fe/Si multilayered films

  • Park, J.S.;Kim, C.O.;Lee, Y.P.;Kudryavtsev, Y.V.;Dubowik, J.;Szymanski, B.;Rhee, J.Y.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.5 no.2
    • /
    • pp.38-42
    • /
    • 2001
  • We investigated physical properties of ion-beam mixed Fe/si multilayerd films(MLF) prepared by rf sputtering onto glass substrates at room temperature. Such an ion-beam treatment has led to noticeable changes in the structural and physical properties of the MLF: the formation of a new phase which is characterized by a crystalline silicide with a low coercivity and Tc = 550 K. In contrast to the as-prepared state, the ion-beam mixed MLF contains two magnetic phases. One of them is a very soft (Hc < 2 Oe), but microscopically homogeneous one with M$\sub$eff/=6.7 kG.

  • PDF

Highly Stretchable and Sensitive Strain Sensors Fabricated by Coating Nylon Textile with Single Walled Carbon Nanotubes

  • Park, Da-Seul;kim, Yoonyoung;Jeong, Soo-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.363.2-363.2
    • /
    • 2016
  • Stretchable strain sensors are becoming essential in diverse future applications, such as human motion detection, soft robotics, and various biomedical devices. One of the well-known approaches for fabricating stretchable strain sensors is to embed conductive nanomaterials such as metal nanowires/nanoparticles, graphene, conducting polymer and carbon nanotubes (CNTs) within an elastomeric substrate. Among various conducting nanomaterials, CNTs have been considered as important and promising candidate materials for stretchable strain sensors owing to their high electrical conductivity and excellent mechanical properties. In the past decades, CNT-based strain sensors with high stretchability or sensitivity have been developed. However, CNT-based strain sensors which show both high stretchability and sensitivity have not been reported. Herein, highly stretchable and sensitive strain sensors were fabricated by integrating single-walled carbon nanotubes (SWNTs) and nylon textiles via vacuum-assisted spray-layer-by-layer process. Our strain sensors had high sensitivity with 100 % tensile strain (gauge factor ~ 100). Cyclic tests confirmed that our strain sensors showed very robust and reliable characteristic. Moreover, our SWNTs-based strain sensors were easily and successfully integrated on human finger and knee to detect bending and walking motion. Our approach presented here might be route to preparing highly stretchable and sensitive strain sensors with providing new opportunity to realize practical wearable devices.

  • PDF

A Study on Drainage Performance of Domestic Plastic Board Drains and Recovery of Discharge Capacity by Vacuum Effect (국내 PBD재의 배수성능과 진공효과에 의한 통수능력 향상에 관한 연구)

  • 박영목
    • Geotechnical Engineering
    • /
    • v.13 no.2
    • /
    • pp.39-54
    • /
    • 1997
  • Laboratory testings were carried out on plastic board drains (PBDs) using large scale test apparatus to evaluate the physical properties and the drainage performance. The test results reveal that the domestic products of PBDs are well compared with the foreign prod acts as far as the quality and drainage performance are concerned. It has also been confirmed that the discharge capacity decreases with time in such a way that the air bubbles are entrapped inside kinky PBDs and these air bubbles block the water flow through PBDs. It has been found that the vacuum pressure iseffectively applicable to recover the discharge capacity affected by the entrapped air bubbles.

  • PDF

Lubricating Properties on Tribo-Coating of Soft Metals in Ultra High Vacuum (초고진공중에서 연질금속의 Tribo-Coating에 관한 윤활특성)

  • 김형자;전태옥;가등건가
    • Tribology and Lubricants
    • /
    • v.10 no.3
    • /
    • pp.18-28
    • /
    • 1994
  • Sliding friction between a spherical pin of 8mm in diameter and flat (disk) substrates coated with vacuum-deposited thin film was measured under ultra high vacuum pressure for various materials, various rates of film supply (8~210 nm/min), various sliding velocities (1.5~67.0 mm/s). It was found that the most effective lubrication was obtained when the adhesion between $Si_3N_4$ pin and SUS440C disk was high and that between $Si_3N_4$ pin and $Si_3N_4$ disk was low. When In film was used as a lubricant between $Si_3N_4$ pin and stainless steel disk, the friction coefficient had a value as low as 0.04. In this case, the normal load W and the sliding speed V were expressed as 10N and 24 mm/s for $10^{-6}Pa$. The dependence of $\mu$ on the thickness h of the Ag film, which was used as a lubricant between $Si_3N_4$ pin and SUS440C (Q) disk was expressed as $\mu$=0.12 for W=10N and V=24mm/s when the film was thicker than 100nm. A brief discussion on these relations is presented from the viewpoint of the real contact area.