• Title/Summary/Keyword: Soft switching full bridge converter

Search Result 80, Processing Time 0.023 seconds

A Comparative Study on Soft Switching Method of Single Stage AC/DC Full-Bridge Converter (단일전력단으로 구성된 역률 보상 AC/DC Full-Bridge Converter의 소프트 스위칭 기법에 대한 비교 연구)

  • Lee S. R.;Jeon C. H.;Jeong C. G.
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.694-697
    • /
    • 2001
  • A optimal soft switching technique for A/DC full bridge converter is proposed. variable soft switching single stage AC/DC full bridge converter with unit power factor are presented in this paper. Using soft switching, we can reduce a switching losses. As a result, achieving good power factor and achieving a good efficiency. We search a optimal soft switching technique in this paper and to verify the theoretical analysis of the presented AC/DC full bridge converter, a design example is given with its Pspice and Psim simulation and experimental results.

  • PDF

Novel ZVS Switching Method of Full-bridge Converter (Full-bridge Converter의 새로운 ZVS 스위칭 기법)

  • Kim, Seung-Ryong;Sun, Han-Geol;Han, Man-Seung;Park, Sung-Jun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.477-483
    • /
    • 2011
  • Existing switching system that is one of the ways which are used for DC/DC power converter is classified to hard-switching system and resonant-soft-switching system, generally. Hard-switching system is inefficient because the power loss of the switching element is large when it is been to trun on or turn off. And resonant-soft-switching system have the defect that need to add the another reactor and capacitor that make it expensive and huge. This paper suggest the ZVS Full-Bridge power converter contrcution of novel switching system for the overcoming these shortcomings. In Suggested soft-switching system, the front of buck converter at diode current, switch is changing on and off at the part of full-bridge converter's zero voltage part. as the result that is possible to be ZVS excepting the reactor and capacitor. also to verify the reasonability of the isolated ZVS full-bridge DC/DC converter as previously suggested, we produced the 500[W] level DC/DC converter and enforced the simulation for Psim, and then it able to conform the superiority of the DC/DC converter's efficient.

A Novel Soft-Switching Full-Bridge PWM Converter with an Energy Recovery Circuit

  • Lee, Dong-Young;Cho, Bo-Hyung;Park, Joung-Hu
    • Journal of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.809-821
    • /
    • 2009
  • This paper proposes a new phase-shift full-bridge DC-DC converter by applying energy recovery circuits to a conventional full-bridge DC-DC converter in plasma display panel applications. The converter can achieve soft-switching in main-switches by an extra auxiliary resonant network even with the wide operating condition of both output load and input voltage. The un-coupled design guidelines to the main bridge-leg component parameters for soft-switching operation contribute to conduction loss reduction in the transformer primary side leading to efficiency improvement. The auxiliary switches in the resonant network also operate in zero-current switching. This paper analyzes the operation modes of the proposed scheme and presents the key design guidelines through steady state analysis. Also, the paper verifies the validity of the circuits by hardware experiments with a 1kW DC/DC converter prototype.

Feasibility Study of Tapped Inductor Filter Assisted Soft-Switching PWM DC-DC Power Converter

  • Moisseev S.;Sato S;Hamada S;Wakaoka M
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.231-234
    • /
    • 2003
  • This paper presents a novel high frequency transformer linked full-bridge type soft-switching phase-shift PWM control scheme DC-DC power converter, which can be used as power conditioner fur small-scale fuel cell power generation system. Using full-bridge soft-switching DC-DC converter topology makes possible to use low voltage high performance MOSFETs to achieve high efficiency of the power conditioner. A tapped inductor filter is implemented in the proposed soft-switching converter topology to achieve soft-switching PWM constant high frequency operation for a wide load variation range. to minimize circulating and idling currents without using additional resonant circuit and auxiliary power switching devices. The practical effectiveness of the proposed soft-switching DC-DC converter is verified in laboratory level experiment with 1 kW 100kHz breadboard setup using power MOSFETs. Actual efficiency of 94-96$\%$ is obtained for the wide load range

  • PDF

A Study on Soft Switching of Single-Stage PFC AC/DC Full Bridge Converter (Single-Stage PFC AC/DC Full Bridge Converter의 소프트 스위칭에 관한 연구)

  • 임경내;성병기;계문호;권순재;김철우
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.401-404
    • /
    • 1998
  • This paper proposes a new soft switching single stage AC/DC full bridge converter with unit power factor and isolated output. This circuit shows that it is possible to combine the boost converter which is for PFC(Power Factor Correction) and full bridge converter which is for DC/DC converter. A simple auxiliary circuit which includes neither lossy components nor active switches eliminates ringing of secondary side of the transformer. The characteristics of the proposed circuit are investigated and the validity is verified by the simulation results.

  • PDF

Dual Utility AC Line Voltage Operated Voltage Source and Soft Switching PWM DC-DC Converter with High Frequency Transformer Link for Arc Welding Equipment

  • Morimoto Keiki;Ahmed NabilA.;Lee Hyun-Woo;Nakaoka Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.4
    • /
    • pp.366-373
    • /
    • 2005
  • This paper presents two new circuit topologies of the dc busline side active resonant snubber assisted voltage source high frequency link soft switching PWM full-bridge dc-dc power converters acceptable for either utility ac 200V-rms or ac 400V-rms input grid. These high frequency switching dc-dc converters proposed in this paper are composed of a typical voltage source-fed full-bridge PWM inverter, high frequency transformer with center tap, high frequency diode rectifier with inductor input filter and dc busline side series switches with the aid of a dc busline parallel capacitive lossless snubber. All the active switches in the full-bridge arms as well as dc busline snubber can achieve ZCS turn-on and ZVS turn-off transition commutation with the aid of a transformer leakage inductive component and consequently the total switching power losses can be effectively reduced. So that, a high switching frequency operation of IGBTs in the voltage source full bridge inverter can be actually designed more than about 20 kHz. It is confirmed that the more the switching frequency of full-bridge soft switching inverter increases, the more soft switching PWM dc-dc converter with a high frequency transformer link has remarkable advantages for its power conversion efficiency and power density implementations as compared with the conventional hard switching PWM inverter type dc-dc power converter. The effectiveness of these new dc-dc power converter topologies can be proved to be more suitable for low voltage and large current dc-dc power supply as arc welding equipment from a practical point of view.

A Novel Soft-Switching PWM DC/DC Converter with DC Rail Series Switch-Parallel Capacitor Edge Resonant Snubber Assisted by High-Frequency Transformer Parasitic Components

  • Fathy, Khairy;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.377-382
    • /
    • 2005
  • This paper presents two new circuit topologies of DC bus lineside active edge resonant snubber assisted soft-switching PWM full-bridge DC-DC converter acceptable for either utility AC 200V-rms or AC 400V-rms input voltage source. One topology of proposed DC-DC converters is composed of a typical voltage source-fed full-bridge high frequency PWM inverter using DC busline side series power semiconductor switching devices with the aid of a parallel capacitive lossless snubber. All the active power switches in the full-bridge arms and DC busline can achieve ZCS turn-on and ZVS turn-off commutations and the total turn-off switching power losses of all active switches can be reduced for high-frequency switching action. It is proved that the more the switching frequency of full-bridge soft switching inverter increases, the more soft-switching PWM DC-DC converter with a hish frequency transformer link has remarkable advantages for its efficiency and power density as compared with the conventional hard-switching PWM inverter type DC-DC converter

  • PDF

A New Soft Switching Technique for Bi-directional Power Flow, Full-bridge DC-DC Converter (양방향 풀-브릿지 DC-DC 컨버터를 위한 새로운 소프트 스위칭 기법)

  • Song, Y.J.;Park, S.I.;Jeong, H.G.;Han, S.B.;Jung, B.M.
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.251-255
    • /
    • 2005
  • This paper proposes a new soft switching technique for a phase-shift controlled bi-directional DC-DC converter. The described converter employs a low profile high frequency transformer and two active full-bridge converters for bidirectional power flow capability. A new soft switching technique is proposed, which guarantees soft switching over wide range (no load to full load) without any additional circuit components. In the proposed switching scheme, the switch pairs in the diagonal position of the converter each are turned on/off simultaneously by the switching signals with a variable duty ratio depending on the phase shift amount, and the converter is operated without freewheeling interval.

  • PDF

Novel Hybrid Converter for the On-Board Charger of Electric Vehicle (전기자동차용 온보드 충전기를 위한 새로운 하이브리드 컨버터)

  • Vu, Hai-Nam;Tran, Dai-Duong;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2015.11a
    • /
    • pp.52-53
    • /
    • 2015
  • This paper introduces a novel hybrid converter combining a full-bridge soft switching converter and a full-bridge LLC converter. In this topology all the primary switches can achieve ZVS and ZCS all over the operation range. An additional switch and a diode are added in the secondary side of full-bridge converter to eliminate the circulating current and to provide a separate freewheeling path. The hybrid structure makes it possible to deliver the power to the secondary all the time of operation, thereby improving the efficiency. The proposed topology is suitable for the applications such as on-board chargers for electric vehicles and high power dc-dc converters. A 6.6-kW prototype converter was implemented and 97.5% efficiency was obtained through the experiments.

  • PDF

Soft Switching Single Stage AC-DC Full Bridge Boost Converter Using Non-Dissipative Snubber (무손실 스너버 적용 소프트 스위칭 Single Stage AC-DC Full Bridge Boost 컨버터)

  • 김은수;조기연;김윤호;조용현;박경수;안호균;박순구
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.377-383
    • /
    • 1999
  • A new soft switching single stage AC-DC full bridge boost converter with unit input power factor and isolated output i is presented in this paper. Due to the use of a non-dissipative snubber on the primary side, a single stage high-power f factor isolated full bridge boost converter has a significant reduction of switching losses in the main switching devices. The non-dissipative snubber adopted in this study consists of a snubber capacitor Cr, a snubber inductor Cr, a fast r recovery snubber diode Dr' and a commutation diode Dp. This paper presents the complete operating principles, t theoretical analysis and experimental results.

  • PDF