• Title/Summary/Keyword: Soft seabed ground

Search Result 14, Processing Time 0.017 seconds

Behaviors of Artificial Reef Reinforced with Settlement Reduction Reinforcement (침하 저감용 보강재로 보강된 인공어초 설치 지반의 거동 특성)

  • Yun, Daeho;Kim, Yuntae
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • This study investigated settlement and scouring characteristics of artificial reef reinforced with various reinforcement types to reduce settlement and scouring. Three reinforcement types were prepared: geogrid, geogrid-bamboo mat (GBM) and seaweed-pile mat (SPM). Various laboratory tests such as bearing capacity test, large size settlement test, two-dimensional flow scour test were performed according to different soil types (sand, silt, clay). Laboratory test results indicated that bearing capacity of seabed with a reinforced artificial reef increased and its settlement and scour depth reduced for all reinforcement types. Especially, reinforcement effect tends to be greater in clay soft ground rather than sand and silt grounds.

Case Study of Improvement against Leakage of a Sea Dike under Construction (해안제방 시공 중 해수유입에 대한 차수보강 사례분석)

  • Han, Sang-Hyun;Yea, Geu-Guwen;Kim, Hong-Yeon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.2
    • /
    • pp.95-103
    • /
    • 2015
  • In this study, the causes and countermeasures for the leakage of a sea dyke under construction are analyzed. In general, the seabed ground is clearly divided from the embankment but a lot of parts show abnormal zones with low resistivity from the results of electric resistivity survey. Hence the causes of the leakage are considered as following: three-dimensional shear strain behavior, irregular compulsory replacement of the soft seabed ground with low strength and quality deterioration of the waterproof sheets during the closing process. The improvement method is determined by considering the constructability in the seawater and its velocity condition, durability, economic feasibility, similar application cases and so on. Consequently, a combination of low slump mortar and slurry grouting and injection method is selected as an optimum combination. Mixing ratio and improvement pattern are determined after drilling investigation and pilot test. The improvement boundary is separated into general and intense leakage area. The construction is performed with each pattern and the improvement effects are confirmed. The confirmed effects with various tests after completion show tolerable ranges for all of the established standards. Finally, various issues such as prediction of length of the waterproof sheet, installation of it against seawater velocity, etc. should be considered when sea dykes are designed or executed around the western sea which has high tide difference.

Application of Verification & Validation for deepsea mining robot technology development (심해저 채광로봇 기술개발을 위한 Verification & Validation의 적용)

  • Sung, Ki-Young;Cho, Su-Gil;Oh, Jae-Won;Yeu, Tae-kyeong;Hong, Sup;Kim, Hyungwoo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.6
    • /
    • pp.689-702
    • /
    • 2019
  • This paper deals with the verification of the functions about mining robot, which is the system for developing deep seabed resources by applying V&V(verification and validation). In order to overcome water pressure of 500 bar and to travel on soft ground, and to operate in deep sea environment with bad conditions, it is necessary to develop a robot that can satisfy various deepsea conditions. A mining robot has been developed based on simulation based design and Multidisciplinary design optimization. In order to verify the developed robot, lab test and real sea test should be performed for various marine environment conditions. There are too many requirements to consider, such as space, time, cost, personnel, and environment to do performance test. So it is costly and time consuming for developing robot. In order to solve this problems, V&V technique was applied to mining robot. The stages of mining robot design, fabrication and commission were verified.

Case Study on Upheaval Characteristics of Marine Soft Ground Improved by Granular Compaction Piles (쇄석다짐말뚝으로 보강된 해상 연약지반의 융기특성 사례분석)

  • Yea, Geu Guwen;Choi, Yong Kyu;Kim, Hong Yeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4C
    • /
    • pp.137-145
    • /
    • 2011
  • The amount of material upheaved owing to the installation of a granular compaction pile (GCP) in the seabed was analyzed by a field execution. The amount of material upheaved was predicted by existing equations, proposed by the Korea Construction New-Technology Association (KCNET; 2003) and Shiomi and Kawamoto (1986), and compared with the amount measured by bathymetry in the field. As a result, the upheaval heights were found to show a clear increase with increasing replacement ratio. The measured amount was larger than the amount predicted by the equations, but the amount predicted from the equation proposed by KCNET (2003) was relatively close to the measured amount. The upheaval heights were found to be more sensitive to the replacement ratio than the installation depth. The increasing trends of the upheaval heights with the installation depth as predicted by the equation of KCNET (2003) were in agreement with the measured trends at a replacement ratio of 25%. As a result of comparing the coefficients of upheaval by the equations, the coefficients of upheaval determined by the equation of KCNET (2003) were larger than those determined by the equation proposed by Shiomi and Kawamoto (1986), which were relatively close to the measured trends. Specifically, the difference between results obtained by both these equations was large when the replacement ratio was relatively low.