• Title/Summary/Keyword: Soft robot

Search Result 105, Processing Time 0.028 seconds

Cross-national Analysis of Robot Research Using Non-Structured Text Analytics for R&D Policy

  • Kim, Jeong Hun;Seo, Han Sol;Lee, Jae Woong;Lee, Jung Won;Kwon, Oh Byung
    • Asia Pacific Journal of Business Review
    • /
    • v.1 no.2
    • /
    • pp.63-88
    • /
    • 2017
  • With the advent of new frontiers in robotics, the spectrum of robot research area has widened in many fields and applications. Other than conventional robot research, many technologies such as smart devices, drones, healthcare robots, and soft robots are emerging as promising applications. Due to the research complexity of this topic, this research requires international collaboration and should be fertilized by R&D policies. This paper aims to propose a method to perform a cross-national analysis of robot research with unstructured data such as papers in the proceedings of an international conference. Text analytics are applied to extract research issues and applications in an automatic manner.

Development of Intelligent Robot for Anastomosis of Intestine (대장 소장 원형문합수술을 위한 지능형 로봇개발)

  • Kwun Y.M.;Hong J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.139-143
    • /
    • 2005
  • As increasing gastrointestinal pathologies, general and thoracic surgeries using circular staplers have been dramatically increased. Because of convenience for surgical procedure, recently, various circular staplers for anastomosis have been used widely. Since the circular staplers conventional have used the displacement control method, however, the anastomosis could have various biomechanical conditions. To do that, biomechanical system of gastrointestinal soft tissue should be examined to control the anastomotic condition. In this study, a new intelligent robot used in circular anastomosis. The intelligent robot driven by a stepper motor and controlled by a digital signal processor.

  • PDF

A robust collision prediction and detection method based on neural network for autonomous delivery robots

  • Seonghun Seo;Hoon Jung
    • ETRI Journal
    • /
    • v.45 no.2
    • /
    • pp.329-337
    • /
    • 2023
  • For safe last-mile autonomous robot delivery services in complex environments, rapid and accurate collision prediction and detection is vital. This study proposes a suitable neural network model that relies on multiple navigation sensors. A light detection and ranging technique is used to measure the relative distances to potential collision obstacles along the robot's path of motion, and an accelerometer is used to detect impacts. The proposed method tightly couples relative distance and acceleration time-series data in a complementary fashion to minimize errors. A long short-term memory, fully connected layer, and SoftMax function are integrated to train and classify the rapidly changing collision countermeasure state during robot motion. Simulation results show that the proposed method effectively performs collision prediction and detection for various obstacles.

Soft Robots Based on Magnetic Actuator (자성 액추에이터 기반의 소프트 로봇)

  • Nor, Gyu-Lyeong;Choi, Moon Kee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.6
    • /
    • pp.401-415
    • /
    • 2021
  • Soft robots are promising devices for applications in drug delivery, sensing, and manufacturing. Traditional hard robotics are manufactured with rigid materials and their degrees of motion are constrained by the orientation of the joints. In contrast to rigid counterpart, soft robotics, employing soft and stretchable materials that easily deforms in shape, can realize complex motions (i.e., locomotion, swimming, and grappling) with a simple structure, and easily adapt to dynamic environment. Among them, the magnetic actuators exhibit unique characteristics such as rapid and accurate motion control, biocompatibility, and facile remote controllability, which make them promising candidates for the next-generation soft robots. Especially, the magnetic actuators instantly response to the stimuli, and show no-hysteresis during the recovery process, essential for continuous motion control. Here, we present the state-of-the-art fabrication process of magnetically controllable nano-/micro-composites, magnetically aligning process of the composites, and 1-dimensional/multi-dimensional multimodal motion control for the nextgeneration soft actuators.

Effect of Leg Stiffness on the Running Performance of Milli-Scale Six-Leg Crawling Robot with Payload (소형 6족 주행 로봇의 페이로드와 다리 강성이 로봇의 주행 성능에 미치는 영향)

  • Chae, Soo-Hwan;Baek, Sang-Min;Lee, Jongeun;Yim, Sojung;Ryu, Jae-Kwan;Jo, Yong-Jin;Cho, Kyu-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.270-277
    • /
    • 2019
  • Inspired by small insects, which perform rapid and stable locomotion based on body softness and tripod gait, various milli-scale six-legged crawling robots were developed to move rapidly in harsh environment. In particular, cockroach's leg compliance was resembled to enhance the locomotion performance of the crawling robots. In this paper, we investigated the effects of changing leg compliance for the locomotion performance of the small light weight legged crawling robot under various payload condition. First, we developed robust milli-scale six-leg crawling robot which actuated by one motor and fabricated in SCM method with light and soft material. Using this robot platform, we measured the running velocity of the robot depending on the leg stiffness and payload. In result, there was optimal range of the leg stiffness enhancing the locomotion ability at each payload condition in the experiment. It suggests that the performance of the crawling robot can be improved by adjusting stiffness of the legs in given payload condition.

Behavioral motivation-based Action Selection Mechanism with Bayesian Affordance Models (베이지안 행동유발성 모델을 이용한 행동동기 기반 행동 선택 메커니즘)

  • Lee, Sang-Hyoung;Suh, Il-Hong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.4
    • /
    • pp.7-16
    • /
    • 2009
  • A robot must be able to generate various skills to achieve given tasks intelligently and reasonably. The robot must first learn affordances to generate the skills. An affordance is defined as qualities of objects or environments that induce actions. Affordances can be usefully used to generate skills. Most tasks require sequential and goal-oriented behaviors. However, it is usually difficult to accomplish such tasks with affordances alone. To accomplish such tasks, a skill is constructed with an affordance and a soft behavioral motivation switch for reflecting goal-oriented elements. A skill calculates a behavioral motivation as a combination of both presently perceived information and goal-oriented elements. Here, a behavioral motivation is the internal condition that activates a goal-oriented behavior. In addition, a robot must be able to execute sequential behaviors. We construct skill networks by using generated skills that make action selection feasible to accomplish a task. A robot can select sequential and a goal-oriented behaviors using the skill network. For this, we will first propose a method for modeling and learning Bayesian networks that are used to generate affordances. To select sequential and goal-oriented behaviors, we construct skills using affordances and soft behavioral motivation switches. We also propose a method to generate the skill networks using the skills to execute given tasks. Finally, we will propose action-selection-mechanism to select sequential and goal-oriented behaviors using the skill network. To demonstrate the validity of our proposed methods, "Searching-for-a-target-object", "Approaching-a-target-object", "Sniffing-a-target-object", and "Kicking-a-target-object" affordances have been learned with GENIBO (pet robot) based on the human teaching method. Some experiments have also been performed with GENIBO using the skills and the skill networks.

Recent Advances in Soft Magnetic Actuators and Sensors using Magnetic Particles (자성 분말 기반 소프트 자성 액츄에이터 및 센서 연구 동향)

  • Song, Hyeonseo;Lee, Hajun;Kim, Junghyo;Kim, Jiyun
    • Journal of Powder Materials
    • /
    • v.28 no.6
    • /
    • pp.509-517
    • /
    • 2021
  • Smart materials capable of changing their characteristics in response to stimuli such as light, heat, pH, and electric and magnetic fields are promising for application to flexible electronics, soft robotics, and biomedicine. Compared with conventional rigid materials, these materials are typically composed of soft materials that improve the biocompatibility and allow for large and dynamic deformations in response to external environmental stimuli. Among them, smart magnetic materials are attracting immense attention owing to their fast response, remote actuation, and wide penetration range under various conditions. In this review, we report the material design and fabrication of smart magnetic materials. Furthermore, we focus on recent advances in their typical applications, namely, soft magnetic actuators, sensors for self-assembly, object manipulation, shape transformation, multimodal robot actuation, and tactile sensing.

Development of Attack Intention Extractor for Soccer Robot system (축구 로봇의 공격 의도 추출기 설계)

  • 박해리;정진우;변증남
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.4
    • /
    • pp.193-205
    • /
    • 2003
  • There has been so many research activities about robot soccer system in the many research fields, for example, intelligent control, communication, computer technology, sensor technology, image processing, mechatronics. Especially researchers research strategy for attacking in the field of strategy, and develop intelligent strategy. Then, soccer robots cannot defense completely and efficiently by using simple defense strategy. Therefore, intention extraction of attacker is needed for efficient defense. In this thesis, intention extractor of soccer robots is designed and developed based on FMMNN(Fuzzy Min-Max Neural networks ). First, intention for soccer robot system is defined, and intention extraction for soccer robot system is explained.. Next, FMMNN based intention extractor for soccer robot system is determined. FMMNN is one of the pattern classification method and have several advantages: on-line adaptation, short training time, soft decision. Therefore, FMMNN is suitable for soccer robot system having dynamic environment. Observer extracts attack intention of opponents by using this intention exactor, and this intention extractor is also used for analyzing strategy of opponent team. The capability of developed intention extractor is verified by simulation of 3 vs. 3 robot succor simulator. It was confirmed that the rates of intention extraction each experiment increase.

Design for Supporting Interoperation between Heterogeneous Networks in Personal Robot System

  • Choo, Seong-Ho;Li, Vitaly;Jang, Ik-Gyu;Park, Tae-Kyu;Jung, Ki-Duk;Choi, Dong-Hee;Park, Hong-Seong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.820-824
    • /
    • 2004
  • Personal Robot System in developing, have a module architecture, each module are connected through heterogeneors network systems like Ethernet, WLAN (802.11), IEEE1394 (Firewire), Bluetooth, USB, CAN, or RS-232C. In developing personal robot system we think that the key of robot performance is interoperability among modules. Each network protocol are well connected in the view of network system for the interoperability. So we make a bridging architecture that can routing, converting, transporting data packets with matcing each network's properties. Furthermore we suggest a advanced design scheme for realtime / non-realtime and control signal (short, requiring hard-realtime) / multimedia data (large, requiring soft-realtime). By some application systems, we could test performance, interoperability and stability. In this paper, we show our design concept, middleware architecture, and some applications systems using this middleware.

  • PDF