• Title/Summary/Keyword: Soft magnetic composite

Search Result 60, Processing Time 0.032 seconds

Optimization of Slurry Preparation Process for Soft Magnetic Green Sheet (연자성 복합체 후막용 슬러리 제조공정의 최적화)

  • Oh, Sea Moon;Lee, Chang Hyun;Shin, Hyo Soon;Yeo, Dong Hun;Kim, Jin Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.12
    • /
    • pp.792-796
    • /
    • 2015
  • With high integration of electronic components, power inductors are also miniaturized. Recently, thick film processes for small size power inductors were developed and commercialized. However, the thick film process to prepare soft magnetic green sheets was not reported enough. In this study, we used Fe-Si magnetic and CIP (carbonyl iron powders) as starting materials to lead to a bimodal particle size distribution in the sheet. We proposed a newly developed 'Modified slurry preparation process' to get well dispersed condition even at high solid contents. Using the new process, it was possible to prepare a well dispersed slurry over 70 vol% of solid. BYK-103 was better than BYK-111 as dispersant in this slurry and the optimum amount was 0.6 wt%. The optimized slurry was formed into a sheet by tape casting process and then the sheet was laminated. We conformed that small size powder, large size powder, and epoxy resin were well dispersed in the green sheet.

Influence of Concentric Saddle Shaped Coils on the Behavior of a Permanent Magnet Transverse Flux Machine with Segmented Construction

  • Baserrah, Salwa;Rixen, Keno;Orlik, Bernd
    • Journal of Magnetics
    • /
    • v.17 no.2
    • /
    • pp.100-108
    • /
    • 2012
  • Flux concentrated permanent magnet transverse flux machines, FCPM-TFMs, with segmented stators require multi-turn concentric saddle coils to replace the ring coils, which are normally utilized in conventional layeredphase TFM constructions. In this paper, we investigate the influence of the shape of saddle phase windings and their parameter variations on the output torque productivity. Non-meshed coils evaluated via a finite element method (FEM) to examine the effect of the coil's location within one phase on machine performance. By using meshed coils, the analysis can be extended to inspect the distributions of magnetic field strength as well as current density in the coils. Throughout the study, the influence of design parameters on the output torque for two stator structures, i.e., a laminated and soft magnetic composite (SMC), are evaluated.

Comparative Study of Stator Core Composition in Transverse Flux Rotary Machine

  • Lee, Ji-Young;Moon, Seung-Ryul;Koo, Dae-Hyun;Kang, Do-Hyun;Lee, Geun-Ho;Hong, Jung-Pyo
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.350-355
    • /
    • 2011
  • This paper deals with the comparison of magnetic characteristics in transverse flux rotary machine according to different stator core composition with the same rotor. Three different stator designs are considered in the analysis according to the material composition of inner and outer stator cores. Electromotive force (EMF), inductance, torque, and core losses are calculated by threedimensional finite element analysis. Calculated and measured results of back-EMF according to the analysis models in dependency on speed are presented.

A density and magnetic characteries of the soft magnetic composite core for high speed motor (고속 모터용 연자체의 밀도와 자기적 특성에 대한 연구)

  • Cha, Hyun-Rok;Yun, Cheol-Ho;Jung, Tae-Uk
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.801-802
    • /
    • 2006
  • 본 논문은 기존의 전기강판 재질을 이용한 모터가 아닌 SMC 재질을 이용한 모터 성형 시 발생 될 수 있는 문제점이 모터의 자기적 특성에 미치는 영향에 대해 분석 하였다. 기존의 전기 강판 재질 모터에서 밀도는 전 영역에서 고른 분포를 갖는 반면에, SMC를 이용한 모터는 위치와 형상에 따라 다른 밀도와 응력 분포를 지닌다. 따라서 본 논문에서는 이러한 SMC 재질을 이용한 모터의 특성이 전기적 에너지 변환 과정에 미치는 영향에 대해서 분석 하기위해, 고속모터(30000rpm)급 모터에서 silicon steel 재질 모터와 SMC 재질모터를 비교 하였다. 비교결과 SMC 재질 모터의 경우 밀도 편차가 5.8%이상 발생되었으며 이는 전기적 특성에 10%이상 영향을 미치는 것으로 나타났다. 특히 고속모터의 경우 자속 포화가 심해 일정하게 높은 밑도 특성이 요구 되는 것으로 파악 되었으며, 향후 이 방법은 SMC 재질을 이용한 모터 설계에 유용하게 이용 될 수 있을 것으로 판단된다.

  • PDF

Effects of BLDC Motor Charactertic made of SMC Material from Inductance change according to Shape of Teeth (SMC재질을 이용한 BLDC전동기의 치 형상에 따른 인덕턴스 변화가 전동기 특성에 미치는 영향)

  • Lee Sang-Ho;Lee Ji-Young;Kim Young-Kyoun;Hong Jung-Pyo;Kim Hong-Suck;Im Tae-Bin
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1046-1048
    • /
    • 2004
  • Inductance is an important parameter determining the characteristics of current waveform in electric motors. There are many kinds of inductances, however, self and mutual inductances are the major components. These inductances are changed under the variation of the magnetic circuit, current, frequency etc., even in the same winding distribution. Therefore this paper deals with the characteristics of inductance according to the shape of stator tooth. The analysis model is newly developed motor made of SMC(Soft Magnetic Composite) to reduce the core loss in high speed. the result of this paper gives the basic understandings of inductance to extend the applications of the motors.

  • PDF

Magnetic Properties of Soft magnetic composite using external flux injection method (압분공정에 외부 자장을 이용한 모터코어용 연자성체의 성능향상)

  • Cha, Hyun-Rok;Yun, Cheol-Ho;Jung, Tea-Uk;Lee, Kyu-Seok;Kim, Kyung-Su;Jeon, Seung-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.156-157
    • /
    • 2007
  • 본 연구는 연자성체를 이용한 모터의 성능 향상을 위해서 모터 코어에 자장을 인가하여 성형 하는 방법을 제안 하고 특성에 대한 고찰을 실시하였다. 연자성체의 모터 코어의 성형중에 자장을 인가하여 분말의 배열을 자속의 이동이 쉬운 방향으로 배열하도록 하여 자속 손실을 최소화 하고자 하였다. 본 연구에서는 이를 위해서 자장을 인가하기위한 자장 금형의 설계시 고려사항 및 자장 인가 전후의 연자성체의 자기적 특성에 대해 고찰하였다.

  • PDF

Ultra Low Field Sensor Using GMI Effect in NiFe/Cu Wires

  • Kollu, Pratap;Kim, Doung-Young;Kim, Cheol-Gi
    • Journal of Magnetics
    • /
    • v.12 no.1
    • /
    • pp.35-39
    • /
    • 2007
  • A highly sensitive magnetic sensor using the Giant MagnetoImpedance effect has been developed. The sensor performance is studied and estimated. The sensor circuitry consists of a square wave generator (driving source), a sensing element in a form of composite wire of a 25 $\mu$m copper core electrodeposited with a thin layer of soft magnetic material ($Ni_{80}Fe_{20}$), and two amplifier stages for improving the gain, switching mechanism, scaler circuit, an AC power source driving the permeability of the magnetic coating layer of the sensing element into a dynamic state, and a signal pickup LC circuit formed by a pickup coil and an capacitor. Experimental studies on sensor have been carried out to investigate the key parameters in relation to the sensor sensitivity and resolution. The results showed that for high sensitivity and resolution, the frequency and magnitude of the ac driving current through the sensing element each has an optimum value, the resonance frequency of the signal pickup LC circuit should be equal to or twice as the driving frequency on the sensing element, and the anisotropy of the magnetic coating layer of the sensing wire element should be longitudinal.

MICROMAGNETISM OF HARD AND SOFT MAGNETIC MATERIALS

  • Kronmuller, Helmut
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.366-371
    • /
    • 1995
  • High performance magnetic materials are characterized by the combination of outstanding magnetic properties and optimized microstructures, e.g., nanocrystalline composites of multilayers and small particle systems. The characteristic parameters of the hysteresis loops of these materials vary over more than a factor of $10^{6}$ with optimum values for the coercive field of several Tesla and permeabilities of $10^{6}$. Within the framework of the computational micromagnetism (nanomagnetism) using the finite element method the upper and lower bounds of the coercive field of different types of grain ensembles and multilayers have been determined. For the case of nanocrystalline composites the role of grain size, exchange and dipolar coupling between grains and the degree of grain alignment will be discusses in detail. It is shown that the largest coercivities are obtained for exchange decoupled grains, whereas remanence enhancing requires exchange coupled grains below 20 nm. For composite permanent magnets based on $Nd_{2}Fe_{14}B$ with an amount of ~ 50% soft $\alpha$-Fe-phase coercivities of ${\mu}_{0}H_{c}=0.75\;T$, a remanence of 1.5 T and an energy product of $400\;kJ/m^{3}$ is expected. In nanocrystalline systems the temperature dependence of the coercivity is well described by the relation ${\mu}_{0}H_{c}=(2\;K_{1}/M_{s}){\alpha}-N_{eff}{\mu}_{0}M_{s}$, where the microstructural parameters $\alpha$ and $N_{eff}$ take care of the short-range perturbations of the anisotropy and $N_{eff}$ is related to the long-range dipolar interactions. $N_{eff}$ is found to follow a logarithmic grain size size dependence ${\mu}_{0}H_{c}=(2\;K_{1}/M_{s}){\alpha}-N_{eff}(\beta1nD){\mu}_{0}M_{s}$. Several trends how to achieve the ideal situation $\alpha$->1 and $N_{eff}$->1->0 will be discussed.

  • PDF

Magnetic properties of Mn54Al46C2.44/Sm2Fe17N3 and Mn54Al46C2.44/Fe65Co35 composites

  • Qian, Hui-Dong;Si, Ping-Zhan;Lim, Jung Tae;Kim, Jong-Woo;Park, Jihoon;Choi, Chul-Jin
    • Journal of the Korean Physical Society
    • /
    • v.73 no.11
    • /
    • pp.1703-1707
    • /
    • 2018
  • Ferromagnetic ${\tau}-phase$ $Mn_{54}Al_{46}C_{2.44}$ particles were synthesized, and its composites with commercial $Sm_2Fe_{17}N_3$ and synthesized $Fe_{65}Co_{35}$ powders were fabricated. Smaller grain size than the single domain size of the $Mn_{54}Al_{46}C_{2.44}$ without obvious grain boundaries and secondary phases is the origin for the low intrinsic coercivity. It was confirmed that the magnetic properties of the $Mn_{54}Al_{46}C_{2.44}$ can be enhanced by magnetic exchange coupling with the hard magnetic $Sm_2Fe_{17}N_3$ and soft magnetic $Fe_{65}Co_{35}$. The high degrees of the exchange coupling were verified by calculating first derivative curves. Thermo-magnetic stabilities of the composites from 100 to 400 K were measured and compared. It was demonstrated that the $Mn_{54}Al_{46}C_{2.44}$ based composites containing $Sm_2Fe_{17}N_3$ and $Fe_{65}Co_{35}$ could be promising candidates for future permanent magnetic materials with the proper control of purity, magnetic properties, etc.

Effects of Annealing on Electromagnetic Wave Absorption Characteristics in FeSiCr Flakes/Polymer Composite Sheets (FeSiCr 박편/폴리머 복합 시트의 전자파 흡수 특성에 미치는 합금 어닐링 효과)

  • Kim, Ju-Beom;Noh, Tae-Hwan
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.3
    • /
    • pp.83-88
    • /
    • 2013
  • The soft magnetic Fe-Si-Cr flakes with the thickness of about 1 ${\mu}m$ were annealed at 500 and $700^{\circ}C$ for 1 h, and the composite sheets for electromagnetic wave noise absorber available for quasi-microwave band were fabricated by using these annealed flakes and polymer. Further the power loss characteristics of the composite sheets was investigated to clarify the annealing effect on electromagnetic wave absorption properties. The power loss decreased in the frequency range of several GHz when the annealed flakes were used as compared to the sheet using the as-milled FeSiCr alloy flakes. Moreover the sheets using annealed flakes exhibited lower value of real and imaginary part of complex permeability. These inferior electromagnetic wave absorption properties of the composite sheets using annealed alloy flakes were considered to be obtained by the enhanced eddy current effect upon annealing-induced recovery of microstructure and resulted low complex permeability.