• Title/Summary/Keyword: Soft Zone

Search Result 199, Processing Time 0.021 seconds

A Study on the Evaluation of Smear Zone by In-situ Tests (현장시험에 의한 Smear Zone의 평가)

  • 이장덕;구자갑
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.207-216
    • /
    • 2003
  • To evaluate the smear zone caused by the drain installation, 10 piezometers were installed in the typical soft ground in the western coastal area of Korea. The dynamic pore water pressure developed during the drain installation was monitored using piezometers installed at a distance of 10cm, 20cm, 30cm, 40cm and 50cm from the location of the drain. The decay of pore pressure with time after pushing piezometers to depths of 5 meters and 7 meters during the drain installation was monitored to assess flow and consolidation characteristics of the soil after disturbance of the soil due to the drain installation. The drain installation results in shear strain and displacement of the soil and it decreases the permeability of the soil. Hence, the comparison between dissipation of the pore water pressure process in 10 pieszometers before as well as after installation of the drain indicated the diameter of disturbance zone and smear zone, which is related to the cross-sectional dimension of the mandrel. In addition, Cone-pressuremeter(CPM) tests were performed to obtain rigidity index of the soil for an interpretation of the dissipation processes. It has been evaluated by in-situ tests that the smear zone is from 3.0 to 3.6 times of the cross-sectional dimension of the mandrel. The hydraulic conductivity expressed in terms of the coefficient of consolidation after the drain installation was calculated from 3 to 8 times decrease evaluated by Teh & Houlsby equation and CPM test results.

A STUDY ON THE CHANGE OF THE UPPER LIP AFTER SAGITTAL SPLIT RAMUS OSTEOTOMY (하악지시상분할절단술에 의한 하악전돌증 수술후 상순의 변화에 관한 연구)

  • Woo, Soon-Seop;We, Hyun-Chul;Lee, Young-Soo;Shim, Kwang-Sup
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.21 no.1
    • /
    • pp.35-40
    • /
    • 1999
  • Recently, sagittal split ramus oseotomy and intraoral vertical ramus osteotomy have been commonly performed for the correction of mandibular prognathism, occurred to abundant oriental people. Many authors have studied the soft tissue change after orthognathic surgery, especially between mandibular hard tissues and soft tissue of lower lip, but the study of upper lip change is comparatively little. Therefore, we studied the 12 patients, operated only sagittal split ramus osteotomy without genioplasty or maxillary osteotomy in department of oral and maxillofacial surgery, Hanyang university hospital from 1996. 1. 1. to 1998. 7. 20. Preoperative and postoperative cephalometric view was measured to know the change of upper lip position and shape after mandibular setback. The result were obtained as follows. 1. The ratio of upper lip change amount to lower incisor horizontal movement was 15.1%. 2. The ratio of lower facial profile between Sn-Stm and Stm-Mes was changed from 1 : 2.352 to 1 : 2.069 after operation. 3. Post-operative upper lip was flattened 72.4% compared with pre-operative one. 4. The vermilion zone of the upper lip increased 56 % horizontally, 5.8% vertically after operation. 5. The vermilion zone ratio of the lower lip to the upper lip was changed from 1 : 1.253 to 1 : 1.348. 6. The distance between esthetic line and Ls was changed from -3.958mm to -1.15mm.

  • PDF

Research on reinforcement mechanism of soft coal pillar anchor cable

  • Li, Ang;Ji, Bingnan;Zhou, Haifeng;Wang, Feng;Liu, Yingjie;Mu, Pengfei;Yang, Jian;Xu, Ganggang;Zhao, Chunhu
    • Geomechanics and Engineering
    • /
    • v.29 no.6
    • /
    • pp.697-706
    • /
    • 2022
  • In order to explore the stable anchoring conditions of coal side under the mining disturbance of soft section coal pillar in Wangcun Coal Mine of Chenghe Mining Area, the distribution model of the anchoring support pressure at the coal pillar side was established, using the strain-softening characteristics of the coal to study the distribution law of anchoring coal side support pressure. The analytical solution for the reinforcement anchorage stress in the coal pillar side was derived with the inelastic state mechanical model. The results show that the deformation angle of the roadway side and roof increases with the roof subsidence due to the mining influence at the adjacent working face, the plastic deformation zone extends to the depth of the coal side, and the increase of anchorage stress can effectively control the roof subsidence and further deterioration of plastic zone. The roadway height and the peak support pressure have a certain influence on the anchorage stress, the required anchorage stress of the coal side rises with the roadway height and the peak support pressure. The required anchorage stress of the coal pillar side decreases as the cohesion between the coal seam and the roof and floor and the anchor length increases. Then, applied the research result to Wangcun coal mine in Chenghe mining area, the design of anchor cable reinforcement support was proposed for the section of coal pillars side that has been anchored and deformed, which achieved great results and effectively controlled the convergence and deformation of the side, providing a safety guarantee for the roadway excavation and mining.

Investigation on the responses of offshore monopile in marine soft clay under cyclic lateral load

  • Fen Li;Xinyue Zhu;Zhiyuan Zhu;Jichao Lei;Dan Hu
    • Geomechanics and Engineering
    • /
    • v.37 no.4
    • /
    • pp.383-393
    • /
    • 2024
  • Monopile foundations of offshore wind turbines embedded in soft clay are subjected to the long-term cyclic lateral loads induced by winds, currents, and waves, the vibration of monopile leads to the accumulation of pore pressure and cyclic strains in the soil in its vicinity, which poses a threat to the safety operation of monopile. The researchers mainly focused on the hysteretic stress-strain relationship of soft clay and kinds of stiffness degradation models have been adopted, which may consume considerable computing resources and is not applicable for the long-term bearing performance analysis of monopile. In this study, a modified cyclic stiffness degradation model considering the effect of plastic strain and pore pressure change has been proposed and validated by comparing with the triaxial test results. Subsequently, the effects of cyclic load ratio, pile aspect ratio, number of load cycles, and length to embedded depth ratio on the accumulated rotation angle and pore pressure are presented. The results indicate the number of load cycles can significantly affect the accumulated rotation angle of monopile, whereas the accumulated pore pressure distribution along the pile merely changes with pile diameter, embedded length, and the number of load cycles, the stiffness of monopile can be significantly weakened by decreasing the embedded depth ratio L/H of monopile. The stiffness degradation of soil is more significant in the passive earth pressure zone, in which soil liquefaction is likely to occur. Furthermore, the suitability of the "accumulated rotation angle" and "accumulated pore pressure" design criteria for determining the required cyclic load ratio are discussed.

A Study on the Determination of Construction Depth of Vertical Drain by Cone Resistance (콘 관입저항치를 이용한 수직배수재 타설심도 결정에 관한 연구)

  • Jang, Seo-Yong;Kim, Jong-Ryeol;Shin, Yun-Sup;Ma, Bong-Duk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.5
    • /
    • pp.163-170
    • /
    • 2006
  • Recently, piezocone penetration test is frequently used in order to estimate the characteristics of soft ground with standard penetration test, generally used in the past. In this study, the correlation of standard penetration test, piezocone penetration test and driving resistance of vertical drain is analyzed in order to increase the confidence for determination of soft ground depth. As the results of each zone, the relation between standard penetration test and piezocone penetration test shows qc=(1.09~1.63)N at the soft ground, determined by 5/30 N value which is decided for soft ground criteria. And qc=(1.21~1.98)N was shown at the point of compressible layer, evaluated by the preconsolidation pressure. And driving resistance of vertical drain is $65{\sim}70kgf/cm^2$ which is equal to $10kgf/cm^2$ of cone penetration resistance.

Effect of the Overlapping Smear Zone on the Consolidation of Clayey Soil (스미어 영역 겹침이 점성토 지반의 압밀에 미치는 영향)

  • Yune, Chan-Young;Kim, Beom-Jun;Kang, Hee-Woong
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.4
    • /
    • pp.13-22
    • /
    • 2013
  • To simulate the soft ground improved by vertical drain method and to investigate the effect of overlapping smear on subsequent consolidation behavior, a series of consolidation tests with a large consolidation chamber and mandrel insertion device were conducted. Based on the test result, numerical analysis was also performed to analyze the efficiency of the vertical drain method. Laboratory test and numerical analysis results showed that the effect of smear zone increased consolidation settlement but the overlapping smear zone decreased the consolidation settlement. In addition, vertical drain accelerated consolidation rate but narrowing the drain spacing did not affect the consolidation rate because of the effect of smear. The efficiency of consolidation rather decreased substantially when the smear zone was overlapped.

Study on post-flutter state of streamlined steel box girder based on 2 DOF coupling flutter theory

  • Guo, Junfeng;Zheng, Shixiong;Zhu, Jinbo;Tang, Yu;Hong, Chengjing
    • Wind and Structures
    • /
    • v.25 no.4
    • /
    • pp.343-360
    • /
    • 2017
  • The post-flutter state of streamlined steel box girder is studied in this paper. Firstly, the nonlinear aerodynamic self-excited forces of the bridge deck cross section were investigated by CFD dynamic mesh technique and then the nonlinear flutter derivatives were identified on this basis. Secondly, based on the 2-degree-of-freedom (DOF) coupling flutter theory, the torsional amplitude and the nonlinear flutter derivatives were introduced into the traditional direct flutter calculation method, and the original program was improved to the "post-flutter state analysis program" so that it can predict not only the critical flutter velocity but also the movement of the girder in the post-flutter state. Finally, wind tunnel tests were set to verify the method proposed in this paper. The results show that the effect of vertical amplitude on the nonlinear flutter derivatives is negligible, but the torsional amplitude is not; with the increase of wind speed, the post-flutter state of streamlined steel box girder includes four stages, namely, "little amplitude zone", "step amplitude zone", "linearly growing amplitude zone" and "divergence zone"; damping ratio has limited effect on the critical flutter velocity and the steady state response in the post-flutter state; after flutter occurs, the vibration form is a single frequency vibration coupled with torsional and vertical DOF.

A Study On The Reinforcing Effect Multibell Anchor Applied To The Cut Slope (비탈면에 적용된 다구근 앵커의 보강효과 연구)

  • Cha, Kyung-Sub;Kim, Seon-Ju;Kim, Tae-Hoon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1286-1293
    • /
    • 2010
  • The ground anchor used in domestic area, which resists by adhesion between anchor body and the ground to the external force, seems not to be adequate for soft ground and urban area where the boundary between structures is close because the ground is disturbed and lost its strength during boring. In order to overcome such a shortcoming an expanded anchor system has been developed. The ground expansion is accomplished by means of Pulse Discharge Technology. In this technology, a high voltage of electricity is stored and discharged in milliseconds which induces high pressure acting on the ground. By making a couple of bulbs, a passive resistance as well as shaft resistance are mobilized, and therefore a higher pullout resistance comparing existing ground anchors is developed.In this study, a couple of full scale tests were conducted in order to figure out how much the resistance of an expanded anchor increases comparing to the straight. As a result, it was found that a remarkable increase in ultimate pullout capacity is observed for the soft ground and as the number of bulb increases. In addtion, as a result of applying to a cut slope reinforcement, it appeared that the length of fixed zone of anchor can be reduced effectively.

  • PDF

Pedicled Perforator Flaps for Reconstruction of Bilateral Knee Defects: A Case Report

  • Park, Joo Seok;Hong, Joon Pio;Oh, Tae Suk
    • Archives of Reconstructive Microsurgery
    • /
    • v.23 no.2
    • /
    • pp.101-104
    • /
    • 2014
  • Reconstruction of soft tissue defects of the knee has always been a challenging task for plastic surgeons. Various reconstructive choices are available depending on the location, size, and depth of the defect relative to the knee joint. Defects on the knee joint have several characteristic features. The use of a free flap is preferred for reconstructions involving obliteration of large-cavity defects, but recipient pedicle isolation can be difficult because of the extent of the injury zone. Furthermore, the true defect during knee joint flexion is larger than during knee joint extension, and a durable flap is necessary for joint movement. We report for the first time on the use of pedicled perforator flaps for reconstruction of bilateral knee defects in a 76-year-old woman. The operative procedure required skeletonizing the perforators of an antero-lateral thigh flap and antero-medial thigh flap and rotating the flap in the defect. The patient returned to normal daily activity and had a full range of motion two months after the accident. The shorter operating time with decreased donor site morbidity and its durability make this flap a valuable alternative for soft tissue reconstruction of the knee.

Fatigue performance of deepwater steel catenary riser considering nonlinear soil

  • Kim, Y.T.;Kim, D.K.;Choi, H.S.;Yu, S.Y.;Park, K.S.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.6
    • /
    • pp.737-746
    • /
    • 2017
  • The touch down zone (TDZ) and top connection point of the vessel are most critical part of fatigue damage in the steel catenary riser (SCR). In general, the linear soil model has been used to evaluate fatigue performance of SCRs because it gives conservative results in the TDZ. However, the conservative linear soil model shows the limitation to accommodate real behavior in the TDZ as water depth is increased. Therefore, the riser behavior on soft clay seabed is investigated using a nonlinear soil model through time domain approach in this study. The numerical analysis considering various important parameters of the nonlinear soil model such as shear strength at mudline, shear strength gradient and suction resistance force is conducted to check the adoptability and applicability of nonlinear soil model for SCR design.