• Title/Summary/Keyword: Sodium-water

Search Result 2,042, Processing Time 0.03 seconds

간척지 토양의 제염과정중 수리전도도의 변화 (Changes of Hydraulic Conductivity During Desalmization of Reclaimed Tidelands)

  • 구자웅;은종호
    • 한국농공학회지
    • /
    • 제30권4호
    • /
    • pp.85-93
    • /
    • 1988
  • This laboratory study was carried out in order to produce fundamental data for analyzing salt movement and desalinization effects, using samples of silt loam soil collected in Gyehwado and Daeho reclaimed tidelans, and samples of silty clay loam soil collected in Kimie tideland. Desalinization experiments with gypsum treatment were performed to analyze changes of the hydraulicc conductivity with changes of the soil property and the salt concentration during the desalinization of reclaimed tideland soils by leaching through the subsufface drainage, and correlations between factors infl uencing the reclamation of salt affected soils were analyzed by the statistical method. The results were summarized as follows: 1. The reclaimed tideland soils used in this study were saline-sodic soils with the high exchangeable sodium percentage and the high electrical conductivity. 2. Changes of the hydraulic conductivity with the amount of leaching water and the leaching time elapsed were affected by the amount of gypsum except exchangeable sodium and clay contents. The regression equation between the depth of water leached per unit depth of soil (Dw / Ds : X) or the square root of the leaching time elapsed (T $^1$ $^2$ : X) and the relative hydraulic conductivity (HCr:Y) could be expressed in Y=a . bx. 3. The more exchangeable sodium and clay contents regardless of the amount of gypsum, the more the leaching time was required until a given volume of water was leached through the soil profile. The regression analysis showed that the relationship between the depth of water leached per unit depth of soil(Dw /Ds:X) and the square root of the leaching time elapsed(T$^1$$^2$ :Y) could be described by Y=a . Xb. 4. The hydraulic conductivity was influenced to a major degree by the salt concentration provided that the electrical conductivity was below 10 mmhos / cm during the desalinization of reclaimed tideland soils. The regression equation between the relative electrical conductivity ( ECr : X) and the relative hydraulic conductivity (HCr:Y) could be expressed in Y=a + b . X-$^1$. 5. In conclusion, the hydraulic conductivity, leaching requirements and the leaching time elapsed can be estimated when the salt concentration decreases to a certain level during the desalinization of reclaimed tidelands, and the results may be applied to the analysis of salt movement and desalinization effects.

  • PDF

세척시 조제의 종류가 직물에의 Calcium 침착에 미치는 영향 (The Effects of Builders on Calcium Deposition on the Fabric)

  • 박문혜;강혜원;김성련
    • 한국의류학회지
    • /
    • 제6권1호
    • /
    • pp.9-15
    • /
    • 1982
  • The influence of builders on calcium deposition on the fabric was studied by laundering the cotton fabric with sodium carbonate, sodium metasilicate, sodium tripolyphosphate and built detergents in hard water. The laundry variables were: 1) Washing cycles: 5, 10, 20, 30 and 40 cycles. 2) Water hardness: 100 ppm, 150 ppm, 200 ppm and 300 ppm. 3) Builders: $Na_2\;CO_3,\;Na_2\;SiO_3$ and STPP. 4) Detergents: Na-DBS, $Na-DBS+Na_2CO_3,\;Na-DBS+Na_2\;SiO_3,\;Na-DBS+STPP,\;Na-DBS+Na_2\;CO_3+STPP$, and $Na-DBS+Na_2\;SiO_3+STPP$. The fabric was washed for 15 minutes at 23+$1^{\circ}C$ in a washing machine(Gold Star WP 3007) under the similar condition with those of home laundering, and rinsed 3 times in the same water hardness for 5 minutes. The calcium deposits on the fabric was determined by EDTA-BACK titration methods. The results of this study were as follows: 1) The amount of calcium deposits on the fabric was increased with increasing wash cycles. This deposit was due to the build up of insoluble calcium carbonate. 2) As the water hardness increased, the amount of calcium deposits on the fabric was increased. 3) Alkaline builders, such as, $Na_2CO_3$ and $Na_2SiO_3$, promoted calcium deposition on the fabric, however STPP prevented calcium deposition on the fabric. 4) Fabric laundered with $Na-DBS+Na_2CO_3$ showed the highest calcium deposits on the fabric, and decreased with the order of $Na_2CO_3$, $Na-DBS+Na_2SiO_3$, and Na-DBS. And fabrics washed with phosphate-built detergents showed a small amount of calcium deposition.

  • PDF

바이오디젤 생산에 미치는 원료 특성의 영향 (Effects of Properties of Raw Materials on Biodiesel Production)

  • 정귀택;박석환;박재희;박돈희
    • KSBB Journal
    • /
    • 제23권4호
    • /
    • pp.335-339
    • /
    • 2008
  • Biodiesel is an alternative and renewable energy source, which is hoped to reduce global dependence on petroleum and environmental problem. Biodiesel produced from a variety of oil sources such as vegetable oil, animal fat and waste oils, and has properties similar to those associated with petro-diesel, including cetane number, volumetric heating value, flash point, viscosity and so on. In this study, we investigate the effect of quality of raw materials on alkali-catalyzed transesterification for producing of biodiesel. The increase of content of free fatty acid and water in oil were caused the sharp decrease of conversion yield. Also, the low purity of methanol in reactant was inhibited the reaction rate. In the case of addition of sodium sulfate as absorbent to prepare catalyst solution, the content of fatty acid methyl ester in product was increased more about 1.6% than that of control. However, the addition of zeolite, sodium chloride and sodium sulfate as absorbent in reactant to remove water generated from reaction did not show any enhancement in the reaction yield. This result may provide useful information with regard to the choice and preparation of raw materials for more economic and efficient biodiesel production.

Influence of Salt Concentrations on the Stabilities and Properties of Sodium Caseinate Stabilized Oil-in-Water Emulsions

  • Surh, Jeong-Hee;McClements, David Julian
    • Food Science and Biotechnology
    • /
    • 제17권1호
    • /
    • pp.8-14
    • /
    • 2008
  • The influence of salt concentration on the stability of sodium caseinate (CAS)-stabilized emulsions (20 wt% corn oil, 3.2 wt% CAS, 5 mM imidazole/acetate buffer, pH 7) was examined. In the absence of salt, laser diffraction measurements and optical microscopy measurements indicated there were some large oil droplets ($d>10\;{\mu}m$) in the emulsions stabilized by 0.8 to 3.2 wt% of CAS. The droplet aggregation (mostly droplet coalescence) observed in the emulsions containing ${\leq}2.8\;wt%$ CAS tended to decrease as the CAS concentration increased, however, after which concentration (at 3.2 wt% CAS) depletion flocculation occurred. The addition of $CaCl_2$ (5-20 mM) into the emulsions stabilized by 3.2 wt% CAS prevented the depletion flocculation although there was a small fraction of relatively large individual droplets in the emulsions, which was attributed to electrostatic screening effect and bridging effect of calcium ion. This study has shown that calcium ion that has been reputed to promote droplet aggregation could improve emulsion stability against droplet aggregation in CAS-stabilized emulsions.

과황산나트륨 산화에 의한 토양내 저휘발성 유기오염물 제거 시 온도의 영향 평가 (Temperature Effects on the Persulfate Oxidation of Low Volatile Organic Compounds in Fine Soils)

  • 정권;김도군;한대성;고석오
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제17권2호
    • /
    • pp.7-14
    • /
    • 2012
  • Batch tests were carried out to evaluate the thermal treatment of low volatile organic compounds in low-permeability soil. The chemical oxidation by sodium persulfate catalyzed by heat and Fe (II) was evaluated. Enhanced persulfate oxidation of n-decane (C-10), n-dodecane (C-12), n-tetradecane (C-14), n-hexadecane (C-16), and phenanthrene was observed with thermal catalyst, indicating increased sulfate radical production. Slight enhancement of the pollutants oxidation was observed when initial sodium persulfate concentration increased from 5 to 50 g/L. However, the removal efficiency greatly decreased as soil/water ratio increased. It indicates that mass transfer of the pollutants as well as the contact between the pollutants and sulfate radical were inhibited in the presence of solids. In addition, more pollutants can be adsorbed on soil particles and soil oxidant demand increased when soil/water ratio becomes higher. The oxidation of the pollutants was significantly improved when catalyzed by Fe(II). The sodium persulfate consumption increased at the same time because the residual Fe(II) acts as the sulfate radical scavenger.

Chemical Characterization of Neutral Extracts Prepared by Treating Pinus radiata Bark with Sodium Bicarbonate

  • MUN, Ji Sun;KIM, Hwan Chul;MUN, Sung Phil
    • Journal of the Korean Wood Science and Technology
    • /
    • 제48권6호
    • /
    • pp.878-887
    • /
    • 2020
  • A neutral extract (NE), that is soluble in cold water and has excellent antioxidant activity, from Pinus radiata pine bark was prepared by sodium bicarbonate treatment, and its chemical characteristics were investigated. NE was prepared by treating P. radiata bark with 0.8% NaHCO3 aqueous solution with a 5 : 1 liquor-to-bark ratio at boiling temperature for 1 h, resulting in 44% yield and final pH of 6.66. The yield of NE was 11% higher than that of the hot water extract (HWE) due to the increase in the solubility of polyphenols, the main component in the bark, by NaHCO3 treatment. NE was characterized through FT-IR, NMR, and MALDI TOF MS analyses. The results indicated that NE is mostly composed of proanthocyanidins (PAs) consisting of procyanidin (PC) units. The acetylated neutral extract (Ac-NE) had weight average molecular weight (${\bar{M}}w$) of 5,300 Da. The Ac-NE had wide molecular weight distribution and its polydispersity (${\bar{M}}w/{\bar{M}}n$) was 6 times higher than that of pure PA. The antioxidant activity of NE was determined by 2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay and showed that NE had comparable antioxidant activity with pure PA.

무기비소에 의한 마우스 간의 단백질 발현 조절 : 단백체 분석 (Regulation of Protein Expression in Mouse Liver by Inorganic Arsenic: Proteomic Analysis)

  • 진보환;성제경;류덕영
    • 한국환경성돌연변이발암원학회지
    • /
    • 제26권2호
    • /
    • pp.35-40
    • /
    • 2006
  • Background: Inorganic arsenic is a human carcinogen that can target the liver, but its carcinogenic mechanisms are still unknown. Inorganic arsenic induces a spectrum of tumors including hepatocellular carcinoma in mice. Methods: Pregnant C3H mice were supplied with drinking water containing 50 ppm sodium arsenite during their pregnancy. The protein expression profile in the liver of 0.5-day-old. male offsprings exposed transplacentally to sodium arsenite was analyzed using protein 2D gel electrophoresis followed by mass spectrometry (MALDI-TOF). Results: Expression of proteins such as hydroxymethylglutaryl-CoA synthase mitochondrial precursor (HMG-CoA synthase), ${\beta}$-actin (cytoplasmic 1) and apolipoprotein A-IV precursor (Apo-AIV) were induced in mouse liver by sodium arsenite, while uricase (urate oxidase), guanine nucleotidebinding protein beta subunit 2-like 1 (RACK1) and fructose-bisphosphate aldolase B (Aldolase 2) were down-regulated. Summary: Expression of proteins that have been implicated in carcinogenesis, such as HMG-CoA, ${\beta}$-actin, and RACK1, was regulated in the liver of mice transplacentally exposed to inorganic arsenic.

  • PDF

퀜칭시 나트륨계 수용액의 냉각성능에 관한 연구 (A Study on the Coolingability of Sodium Aqueous Solutions by Quenching)

  • 김옥삼;최은순;민수홍
    • 열처리공학회지
    • /
    • 제5권4호
    • /
    • pp.224-232
    • /
    • 1992
  • Coolingability of coolants is important factor in cooling processor heat treatment of steel. Using standard apparatus and method defined in the Korean Industrial Standard three different shapes of probe were designed, ie, cylinderical, spherical and square on shape with same volume of standard probe. Distilled water and sodium aquious solutions with different concentration of NaOH, NaCl and $Na_2CO_3$ were examined. Estimation of coolingability of each quenchants for the probes of cylinderical, spherical or square shape, the cooling rate is greater square, cylinder and sphere in order. Coolingability of sodium aquious solution of NaCl, $Na_2CO_3$ and NaOH is found generally greater then that of distilled water. Effectiveness of ingredients is in the order of $Na_2CO_3$, NaOH and NaCl. In both solutions coolingability increases in 20%, 5%, and 10%in order. Analytical results obtained from Finite Element Method were compared with experimental ones and found as practically satisfactional.

  • PDF

Evaluation of Electrokinetic Remediation of Arsenic Contaminated Soils

  • Kim, Won-Seok;Kim, Soon-Oh;Kim, Kyoung-Woong
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 임시총회 및 추계학술발표회
    • /
    • pp.72-75
    • /
    • 2004
  • The potential of electrokinetic (EK) technology has been successfully demonstrated for the remediation of heavy metal contaminated fine-grained soils through laboratory scale and field application studies. Arsenic contamination in soil is a serious problem affecting both site use and groundwater quality. The EK technology was evaluated for the removal of arsenic from two soil samples: kaolinite clay artificially contaminated with arsenic and arsenic-bearing tailing soil taken from the Myungbong (MB) mining area. The effect of cathodic electrolyte on the process was investigated using three different types of electrolyte: deionized water (DIW), potassium phosphate (KH$_2$PO$_4$) and sodium hydroxide (NaOH). The result of experiments on the kaolinite clay shows that the potassium phosphate was most effective in extracting arsenic, probably resulting from anion exchange of arsenic species by phosphate. On the contrary, the sodium hydroxide seemed to be most efficient in removing arsenic from the tailing soil, and it is explained by the fact that sodium hydroxide increased the soil pH and accelerated ionic migration of arsenic species through increase in desorption and dissolution of arsenic species into pore water.

  • PDF

Antimicrobial Effect of Acidified Sodium Chlorite (ASC) on Whole Croaker

  • Lee, Byung-Doo;Koo, Ja-Heon;Jahncke, Michael L.;Kim, Du-Woon;Chung, Dong-Ok;Eun, Jong-Bang
    • Preventive Nutrition and Food Science
    • /
    • 제13권4호
    • /
    • pp.266-268
    • /
    • 2008
  • The antimicrobial effect of acidified sodium chlorite (ASC) solution on whole croaker skin was evaluated. Whole croaker skin was treated with ASC (50, 100, 200, 400, and 600 ppm) and distilled water. After 10-minute exposure to 600 ppm ASC, 8% of Gram-negative bacteria survived on the whole croaker sample. Treatment with 50 ppm ASC eliminated all coliforms in the initial load. Immersion treatment with 600 ppm ASC resulted in $1.3\;log\;CFU/cm^2$ greater kill of the initial mesophile loads of control ($2.8\;log\;CFU/cm^2$) than distilled water. Fifty ppm ASC solution produced a 1.6-log reduction of psychrotrophic bacteria. ASC treatment was an effective method for reducing naturally occurring microflora on whole croaker skin.