• Title/Summary/Keyword: Sodium-exchanged clay

Search Result 3, Processing Time 0.017 seconds

Comparison Study on the Removal of Cationic Dyes from Aqueous Suspension of Maghnia Montmorillonite (Maghnia 산 Montmorillonite 수용액으로부터 양이온 염료의 제거 비교연구)

  • Elaziouti, A.;Laouedj, N.
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.3
    • /
    • pp.300-309
    • /
    • 2010
  • The ability of sodium-exchanged clay particles as an adsorbent for the removal of commercial dyes, Methylene blue (MB) and Malachite green oxalate (MG) from aqueous solutions has been investigated under various experimental conditions. The effect of the experimental parameters, such as pH solution, agitation time, adsorbate concentration and adsorbent dose were examined. Maximum adsorption of dyes, i.e. >90% has been achieved in aqueous solutions using 0.03 g of clay at a pH of 7 and 298 K for both dyes. The adsorption process was a fast and the equilibrium was obtained within the first 5 min. For the adsorption of both MB and MG dyes, the pseudo-second-order reaction kinetics provides the best correlation of the experimental data. The adsorption equilibrium results follow Langmuir and Dubini-Radushkevich (D-R) isotherms with high regression coefficients $R^2$ > 0.98. The mean free energies $E_a$ of adsorption from D-R model were 3.779 and 2.564 kj/mol for MB and MG respectively, which corresponds to a physisorption process.

Competitive Adsorption of Two Basic Dyes RB5 and GB4 on a Local Clay (점토에 대한 2개 염기성 염료 RB5와 GB4의 경쟁 흡착)

  • Elaziouti, A.;Derriche, Z.;Bouberka, Z.;Laouedj, N.
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.1
    • /
    • pp.110-114
    • /
    • 2010
  • The equilibrium of adsorption of basics dyes RB 5 and BG 4 from a single dyes in the mixtures on the sodium-exchanged clay of the Maghnia (Algeria) was studied. The maximum adsorption capacities of BR5 and BG4 in single dyes were 465.13 and 469.90 mg/g respectively. In the simultaneous adsorption of BR5 and BG4 from mixture solutions, three different initials concentrations ratios R (R=$C_{(BR5)}/C_{(BG4)}$) were tested: 2.5/1, 1/1 and 1/2.5 using ADMI method. The isotherms adsorptions of dyes from the mixtures are characteristics of competition phenomenon. A very strong interaction between BR5 and BG4 for the active sites of adsorption of surface of clay is obtained for R = 1/1. The ratio R' (R'=$Qe_{(mixture)}/Qe_{(single)}$) of the adsorption capacity of BR5 and BG4 in the mixture were reduced by factor of 0.86, 0.74 and 0.84 for the initials concentrations ratios R (R=$C_{(BR5)}/C_{(BG4)}$) of 2.5/1, 1/1 and 1/2.5 respectively. The variation of the ratio of the adsorption capacity R‘ of BR5 and BG4 in the mixture solutions with initial concentration ratios R indicates that BR5 dye is slightly favourable in the competition adsorption than BG4. Langmuir and Freundlich models fit very well with adsorption behaviour of single dyes as well as the dyes in mixture solutions.

Applied-Mineralogical Characterization and Assessment of Some Domestic Bentonites (II): Mineralogical Characteristics, Surface Area, Rheological Properties, and Their Relationships (국내산 벤토나이트에 대한 응용광물학적 특성 평가 (II): 광물학적 특징, 체표면적 및 유변학적 특성과 그 연계성)

  • 노진환;유재영;최우진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.33-47
    • /
    • 2003
  • Various applied-mineralogical characterization including measurements of surface area, size distribution, swelling index, and viscosity were done for some domestic bentonites in order to decipher the rheological properties and their controlling factors. The bentonites, which are Ca-type and relatively low-grade (rnontmorillonite contents: 30 ∼ 75 wt%), occur mostly as subhedral lamellas with the size range of 2 ∼ 4 $\mu\textrm{m}$. The size distribution of mineral fractions in bentonite suspension is dominant in the range of 10 ∼ 100 $\mu\textrm{m}$, and though rather complicated, exhibits roughly bimodal patterns. The feature is more conspicuous in the case of zeolitic bentonite. The bentonites have surface areas ranging 269 ∼ 735 $\m^2$/g, which are measured by EGME adsorption method. The EGME surface areas are nearly proportional to the rnontmorillonite contents, moisture contents, or total CEC. In the surface area measurements, zeolitic bentonites have slightly higher values than those zeolite- free types. The measured swelling index and viscosity of domestic bentonites are comparatively low in values. The swelling values of bentonites were measured to be 250∼500% at maximum by progressively mixing amounts of 2 ∼ 5 wt% Na$_2$CO$_3$, which varies depending on the contents of rnontmorillonite and other impurities, especially zeolite. Much amount of sodium carbonate is required for optimum swelling property of zeolitic bentonited which has usually strong Na- exchanged capacity. The bentonites, which are comparatively feldspar-rich and low in size and crystallinity, tend to be higher in viscosity values. Tn addition, the viscosity is largely higher in case of the bentonites with higher pH in suspension. However, the rheological properties of bentonites such as swelling index and viscosity do not show any obvious relationships with rnontmorillonite contents and mean particle size in suspension. In contrast, roughly speaking, the swelling index of bentonites is reversely proportional to the values of surface area which can be regarded as a collective physico-chemical parameter encompassing all the effects caused by mineral composition, surface charge, particle size, morphological farm, and etc. in bentonites. Thus, the rheological properties in bentonite suspension appear to be rather complicated characteristics which mainly depend on the flocculation of clay particles and the mode of particle association, i.e. quasicrystals, controlled by surface charge, morphology, size, and texture of rnon-tmorillonite, and which partly affected by the finer impurities such as zeolite.