• Title/Summary/Keyword: Sodium tripolyphosphate

Search Result 57, Processing Time 0.027 seconds

Properties of β-carotene-loaded chitosan/hyaluronic acid nanocapsules: solubility and redispersibility (베타카로틴 함유 키토산/하이알루론산 나노캡슐의 용해도 및 재분산성 특성)

  • An, Eun Jung;Lee, Ji-Soo;Lee, Hyeon Gyu
    • Korean Journal of Food Science and Technology
    • /
    • v.54 no.1
    • /
    • pp.66-74
    • /
    • 2022
  • To improve the solubility of β-carotene, three types of β-carotene-loaded nanocapsules were prepared using chitosan (CS) and two cross-linkers, sodium tripolyphosphate (TPP) and hyaluronic acid (HA), alone or in combination (CS-TPP, CS-TPP-HA, and CS-HA). The entrapment efficiency of all nanocapsules significantly increased with an increase in TPP and HA, with the efficiency ranging from 95% to 99%. The solubility of β-carotene was significantly improved by CS nanoencapsulation before and after lyophilization and during storage. CS/HA nanoencapsulation significantly improved (by 11-fold) the water solubility of β-carotene. In particular, CS/HA nanoencapsulation was the most effective in terms of not only the solubility of β-carotene, but also the redispersibility ratio. Therefore, CS/HA encapsulation could be useful for improving the solubility of poorly soluble active ingredients, such as β-carotene.

Antibiofilm activity of polyethylene glycol-quercetin nanoparticles-loaded gelatin-N,O-carboxymethyl chitosan composite nanogels against Staphylococcus epidermidis

  • Wanhe Luo;Yongtao Jiang;Jinhuan Liu;Beibei Sun;Xiuge Gao;Samah Attia Algharib;Dawei Guo;Jie Wei;Yurong Wei
    • Journal of Veterinary Science
    • /
    • v.25 no.2
    • /
    • pp.30.1-30.16
    • /
    • 2024
  • Background: Biofilms, such as those from Staphylococcus epidermidis, are generally insensitive to traditional antimicrobial agents, making it difficult to inhibit their formation. Although quercetin has excellent antibiofilm effects, its clinical applications are limited by the lack of sustained and targeted release at the site of S. epidermidis infection. Objectives: Polyethylene glycol-quercetin nanoparticles (PQ-NPs)-loaded gelatin-N,O-carboxymethyl chitosan (N,O-CMCS) composite nanogels were prepared and assessed for the on-demand release potential for reducing S. epidermidis biofilm formation. Methods: The formation mechanism, physicochemical characterization, and antibiofilm activity of PQ-nanogels against S. epidermidis were studied. Results: Physicochemical characterization confirmed that PQ-nanogels had been prepared by the electrostatic interactions between gelatin and N,O-CMCS with sodium tripolyphosphate. The PQ-nanogels exhibited obvious pH and gelatinase-responsive to achieve on-demand release in the micro-environment (pH 5.5 and gelatinase) of S. epidermidis. In addition, PQ-nanogels had excellent antibiofilm activity, and the potential antibiofilm mechanism may enhance its antibiofilm activity by reducing its relative biofilm formation, surface hydrophobicity, exopolysaccharides production, and eDNA production. Conclusions: This study will guide the development of the dual responsiveness (pH and gelatinase) of nanogels to achieve on-demand release for reducing S. epidermidis biofilm formation.

Preblending Effects of Curing Agents on the Characteristics of Mechanically Deboned Chicken Meat (염지제 종류와 혼합에 따른 기계발골 계육의 가공 특성과 저장성)

  • Kang, Soo-Yong;Park, Ki-Soo;Choi, Yang-Il;Lee, Sang-Hwa;Auh, Joong-Hyuck
    • Food Science of Animal Resources
    • /
    • v.29 no.2
    • /
    • pp.220-228
    • /
    • 2009
  • This study was conducted to determine the preblending effect of curing agents on the characteristics of mechanically deboned chicken meat (MDCM), including the pH, water-holding capacity (WHC), and stability under refrigeration conditions. MDCM was preblended with different curing agents [NaCl, 0.75 or 1.5%; sodium tripolyphosphate (STPP), 0.25 or 0.5%; ascorbic acid, 250 or 500 ppm; sodium nitrite, 75 or 150 ppm] and were stored at $4^{\circ}C$ overnight. The preblending of NaCl was found to have improved the WHC and emulsion stability; STPP was found to have improved the pH, WHC, and emulsion stability; and ascorbic acid or sodium nitrite did not affect the pH, WHC, and emulsion stability. The addition of ascorbic acid or sodium nitrite, however, decreased the 2-thiobarbituric acid (TBA) and volatile basic nitrogen (VBN) values of the preblended MDCM through the antioxidizing properties. The mixing effects of different curing agents on MDCM were also evaluated with nine different conditions. Among the treatments, the mixture of NaCl and STPP improved the WHC and emulsion stability due to the increased solubility of salt-soluble protein in the preblended MDCM. The mixture of NaCl, STPP, and ascorbic acid increased the pH, WHC, and emulsion stability, but the mixture of NaCl, STPP, ascorbic acid, and sodium nitrite improved the WHC, emulsion stability, and redness of the surface color with improved storage stability due to the decreased VBN and TBA values. As a result, the mixture of 1.5% NaCl, 0.5% STPP, 500 ppm ascorbic acid, and 75 ppm sodium nitrite showed the best properties as curing agents for MDCM preblending.

Development and Characterization of a Hydrolyzed Goat Milk Protein/Chitosan Oligosaccharide Nano-Delivery System (산양유 단백질 분해물/키토올리고당 나노 전달체 제조 및 물리화학적 특성연구)

  • Ha, Ho-Kyung;Kim, Jin Wook;Han, Kyoung-Sik;Yun, Sung Seob;Lee, Mee-Ryung;Lee, Won-Jae
    • Journal of Dairy Science and Biotechnology
    • /
    • v.35 no.3
    • /
    • pp.208-214
    • /
    • 2017
  • The aims of this study were to manufacture a hydrolyzed goat milk protein (HGMP)/chitosan ologisaccharide (CSO) nano-delivery system (NDS) and to investigate the effects of production variables, such as sodium tripolyphosphate (TPP), HGMP, and CSO concentration levels, on the formation and physicochemical properties of the NDS. An HGMP/CSO NDS was produced using the ionic gelation method at pH 5.5. Transmission electron microscopy and a particle size analyzer were used to determine the morphological and physicochemical properties of NDSs, respectively. The size of the HGMP/CSO NDS decreased from 225 to 138 nm as HGMP and CSO concentration levels decreased. The NDS had a positive surface charge, with a zeta-potential value of +23 mV. The encapsulation efficiency (EE) of docosahexaenoic acid was enhanced as the HGMP concentration level increased. Additionally, increasing the concentration level of CSO resulted in an increase in the EE of resveratrol. The HGMP/CSO NDS exhibited good physical stability during freeze-drying. Thus, our findings showed that the HGMP/CSO NDS was successfully manufactured and that HGMP and CSO concentration levels were key factors affecting the physicochemical properties of the NDS.

Product Characteristics as Factors of Process Parameters in Starch Phosphates Preparation by Twin-screw Extruder (이축압출성형기로 인산전분 제조시 Process Parameters에 따른 제품의 특성)

  • Kim, Chong-Tai;Kim, Dong-Chul;Kim, Chul-Jin;Kim, Hae-Sung
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.235-240
    • /
    • 1991
  • Starch phosphates were prepared from the corn starch mixed with 2% sodium tripolyphosphate by twin-screw extruder with a feed rate of 20 kg/hr and an extrusion temperature of $130^{\circ}C$, and the effects of extrusion variables on the physicochemical properties (target parameters) of starch phosphates were investigated. Interrelations of system parameters (specific mechanical energy and extrudate moisture) and rheological properities of starch was analyzed by using the response surface analysis. Degree of substitution (DS) was increased with increasing the feed moisture, and showed the maximum value at the screw of near 250 rpm, Degree of gelatinization was proportionally increased with increasing the screw speed and decreasing the feed moisture. Apparent viscosity of the paste was increased with increasing the feed moisture, but it was not significantly affected by the screw speed. It was found by scanning electron microscopy that the starch microgranules were much more degradaded, and as consequent result, the intrinsic viscosity was decreased, whereas, water solubility index was increased. The rate of retrogradation of the gels was retarded with increasing DS and decreasing viscosity.

  • PDF

Effects of Phosphate Addition Alone or in Combined with Dipping in Trisodium Phosphate Solution on Product Quality and Shelf-life of Low-fat Sausages during Refrigerated Storage (인산염의 첨가와 침지가 저지방 소시지의 냉장저장 중 품질과 저장성에 미치는 영향)

  • Lee, Yu-Mee;Chin, Koo-Bok
    • Food Science of Animal Resources
    • /
    • v.32 no.1
    • /
    • pp.84-90
    • /
    • 2012
  • This study was performed to determine the quality characteristics and shelf-life of low-fat sausages (LFS) with 0.4% sodium tripolyphosphate (STPP) alone or in combination with a 10% trisodium phosphate (TSP) solution during refrigerated storage. When 0.4% STPP was added, no differences in pH values were observed. However, pH values increased with the addition of the TSP solution when 0.4% STPP was incorporated. The addition of STPP into LFS decreased redness and the dipping in the TSP solution increased yellowness (p<0.05). Total bacteria and Listeria monocytogenes, which inoculated Log $10^{3-4}$ colony forming units (CFU/g) were increased with increased storage time. At 4 wk of storage, total bacteria and Listeria monocytogenes reached levels of 8.03-8.22 Log CFU/g, however they decreased to 7.89 Log CFU/g at 8 wk of storage time. Due to the pH increases, Listeria monocytogenes significantly increased in LFS dipping with 10% TSP. Based on these results, LFS dipping with 10% TSP solution promoted the growth of Listeria monocytogenes, regardless of STPP addition. These results indicated that 0.4% STPP addition and dipping with TSP affected the pH and color, however, it didn't extend the shelf-life of LFSs during refrigerated storage.

인산 쌀 전분의 이화학적 특성

  • 정재홍;이미현;오만진
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 2003.10a
    • /
    • pp.223.1-223
    • /
    • 2003
  • 인산 쌀 전분을 제조, 이용하기 위한 기초 자료를 얻기 위하여 추청벼와 삼강벼를 원료로 하여 쌀 전분을 제조하고 이에 15% sodium tripolyphosphate를 가하여 15$0^{\circ}C$에서 30분간 반응시켜 얻어진 인산 쌀 전분(D. S.=0.015)의 이화학적 성질을 검토하였다. 인산 쌀 전분의 투명도는 원료 전분에 비하여 높았으며 원료 전분은 6$0^{\circ}C$, 인산 쌀 전분은 5$0^{\circ}C$부터 증가하기 시작하였다. 인산 쌀 전분의 색도는 원료 전분에 비하여 명도가 감소하였으며, 적색도 및 황색도는 증가하였다. 이것은 초산 처리 쌀 전분보다는 색상에서 좋지 않게 평가되었다. 인산 처리한 추청벼 및 삼강벼 전분의 호화개시 온도는 각각 5$0^{\circ}C$, 53$^{\circ}C$로서 인산 처리에 의해 원료 쌀 전분보다 14~15$^{\circ}C$ 낮아졌으며, 인산 쌀전분의 점도는 원료 쌀 전분에 비하여 7.4~8.4배 증가하였고 추청벼 전분이 삼강벼 전분보다 높게 나타났다. 인산 쌀 전분 겔의 견고성, 응집성, 접착성, 탄력성, 점착성 및 씹힘성은 원료 전분 겔보다 높았으며 두 품종간에는 추청벼 전분이 다소 높았다. 인산 쌀 전분 입자의 표면 구조는 원료 쌀 전분에 비하여 다소 팽윤되어 헝클어진 형태를 나타냈다. 이상의 결과를 볼 때 인산 처리 쌀전분이 원료 쌀 전분보다 호하 개시 온도가 낮고, 점도가 높아 즉석면의 제조 시 호화 온도를 낮추고 쫄깃쫄깃한 촉감의 면을 만들 수 있음을 시사하고 있으며, 정이 보고한 초산 처리 쌀 전분과 이용성을 비교할 때 인산 처리 전분이 라면 제조에 있어 더 효과적일 것임이 예상된다.desirability(전체적으로 바람직한 정도)의 경우 효소처리시킨 시료중 pH6.5$\longrightarrow$3.5, 35$^{\circ}C$(T1)과 45$^{\circ}C$(T3)처리군이 28일간 수침시켜 제조한 유과와 비교될 만한 높은 점수를 보여 이를 처리군에서 바람직한 특성을 지닌 유과 제조가 가능한 것으로 나타났다.의 Softness 는 Compression force 및 Work ratio 와 유의적인 상관관계를 나타내었으며, Dryness 와 Crumblyness 는 Work ratio와 유의적인 상관관계를 나타내고 있어 백편의 조직감은 Compression force 와 Work ratio로 대치할 수 있을 것이라고 사료된다. 수분함량은 기계적 검사보다 관능검사와 더욱 높은 상관관계를 나타냈다.내었다. 항균활성이 우수한 생약재를 농도별로 활성을 조사한 결과, 물 추출물과 10% Ethanol 추출물 모두 낮은 농도에서도 우수한 항균활성을 나타내었다.취와 함께 점질성 갈변물질이 생성되었다. 이와 같은 결과로 볼 때, BAAG의 처리는 BAAC의 경우보다 가격은 저렴하면서도 항균력은 우수한 천연 항균복합제재로써 농산물 식품원료에 적용하여 선도유지 기간을 연장할 수 있는 효과를 기대할 수 있었다. 과일 등의 포장제로서 이용할 가능성을 확인하였다.로 [-wh] 겹의문사는 복수 의미를 지닐 수 없 다. 그러면 단수 의미는 어떻게 생성되는가\ulcorner 본 논문에서는 표면적 형태에도 불구하고 [-wh]의미의 겹의문사는 병렬적 관계의 합성어가 아니라 내부구조를 지니지 않은 단순한 단어(minimal $X^{0}$ elements)로 가정한다. 즉, [+wh] 의미의 겹의문사는 동일한 구성요

  • PDF