• Title/Summary/Keyword: Sodium sulfate solution

Search Result 294, Processing Time 0.019 seconds

Evaluation on Sulfate Attack Resistance of Cement Matrix (시멘트 경화체의 황산염침식 저항성 평가)

  • 문한영;김홍삼;이승태
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.5
    • /
    • pp.141-151
    • /
    • 2000
  • Compressive strength, sulfate deterioration factor(SDF) and length change of 5 types of mortars immersed in sodium sulfate solution were observed. As the results of tests, it was found that the sulfate resistance of blended cement mortars were superior to that of portland cement mortars. Pore volume with diameter larger than 0.1 $\mu\textrm{m}$ of 5 types of pastes indicated that the micro-structures of blended cement pastes were denser, due to pozzolan reaction and latent hydraulic properties, than those of portland cement pastes. The XRD, ESEM, EDS and TG analyses demonstrated that the reactants such as ettringite and gypsum were significantly formed in portland cement pastes. Besides, compared with the $Ca(OH)_2$ content of ordinary portland cement pastes immersed in water and sodium sulfate solution, the $Ca(OH)_2$ contents of fly ash blended cement and ground granulated blast-furnace slag cement paste were about 58% and 28% in water, and 55% and 20% in sodium sulfate solution, respectively.

Manufacture and Properties of Gypsum-Wood (Gypsum-Wood의 제조와 성질)

  • Lee, Jong-Shin;Kim, Soung-Joon
    • Journal of the Korea Furniture Society
    • /
    • v.19 no.1
    • /
    • pp.83-90
    • /
    • 2008
  • Gypsum-wood composites were made by introducing inorganic substances into wood using calcium chloride, first treating solution, and sodium sulfate, secondary treating solution, by double diffusion process under atmospheric pressure at room temperature. The process conducted as follows: water saturated specimens were soaked in calcium chloride solutions at several concentration. Then the specimens were soaked further in saturated sodium sulfate solution, and they were leached in flowing tap water for 24h. To attain sufficient weight percent gain (WPG) values, the suitable concentration of calcium chloride and soaking time in saturated sodium sulfate solution were 20% and 48h, respectively. Inorganic substances were produced mainly in the lumina of tracheides. It was made sure that these substances were dihydrate gypsum($CaSO_4$ $2H_2O$) by X -ray microanalysis (SEM-EDX). The composites had good fire resistance due to low heat transfer rate of gypsum formed in wood. However, the composites had little decay resistances, because they showed high weight losses by test fungi attacks.

  • PDF

Recovery of Sodium Sulfate from Farm Drainage Salt and Using It in Direct Dyeing of Cotton - Analysis of Color Difference -

  • Jiyoon Jung
    • The International Journal of Costume Culture
    • /
    • v.4 no.1
    • /
    • pp.18-24
    • /
    • 2001
  • Agricultural drainage salt generated during irrigation of crops in San Joaquin Valley, California, exceeds 600,000 tons annually and cumulates in the field in a rapid rate. As a result, the waste is taking out more farmlands for salt storage and disposal, imposing serious concerns to environment and local agricultural industry. In searching for a potential solution to reduce or eliminate the waste, this research explored feasibility of producing a value -added product, sodium sulfate, from the waste and utilizing the product in textile dyeing. The results indicated that sodium sulfate could be produced from the salt and could be purified by a recrystalization method in a temperature range within the highest and lowest daily temperatures in summer in the alley. The recovered sodium sulfate samples, with purities ranging from 67% to 99.91, were compared with commercially available sodium sulfate in direct dyeing of cotton fabrics. The salt samples recovered from Mendata, California (〉98.8% sodium sulfate) cause little color difference in the dyeing with selected direct dyes, and the purified salt (Ⅲ) (99.91% sodium sulfate) is more applicable for direct dyeing of cotton fabrics if it has no other toxic effects. The recovered sodium sulfate from certain areas in the valley could not be employed in direct dyeing due to the high level of impurities in it.

  • PDF

Reuse of Sodium Sulfate Recovered from Farm Drainage Salt of San Joaquin Valley in California, U.S.A. as Dyeing Builder of Levelling Dyes (미국 캘리포니아 San Joaquin Valley 농업관개수에서 회수한 Sodium Sulfate의 균염성 염료 조제로의 재활용)

  • 정지윤
    • The Research Journal of the Costume Culture
    • /
    • v.11 no.3
    • /
    • pp.416-422
    • /
    • 2003
  • Agricultural drainage salt generated during irrigation of crops in San Joaquin Valley, California, exceeds 600,000 tons annually and cumulates in the field in a rapid rate. As a result, the waste is taking out more farmlands for salt storage and disposal, imposing serious concerns to environment and local agricultural industry. In searching for a potential solution to reduce or eliminate the waste, this research explored feasibility of producing a value-added product, sodium sulfate, from the waste and utilizing the product in textile dyeing. The results indicated that sodium sulfate could be produced from the salt and could be purified by a recrystalization method in a temperature range within the highest and lowest daily temperatures in summer in the valley. The recovered sodium sulfate samples, with purities ranging from 67% to 99.91, were compared with commercially available sodium sulfate in the dyeing of levelling dyes with nylon/wool fabrics. In nylon/wool fabrics, C.I. Acid Yellow 23 had similar exhaustions among Na₂SO₄ I, Na₂SO₄ II, Na₂SO₄ III and Na₂SO₄ Ⅴ which had similar ratios of sodium sulfate and sodium chloride in recovered salts. Na₂SO₄ Ⅳ had low exhaustion which had low ratios of sodium sulfate and sodium chloride. In nylon/wool fabrics, C.I. Acid Blue 158 had similar exhaustions among Na₂SO₄ I, Na₂SO₄ II, Na2₂SO₄ III, Na₂SO₄ IV and Na₂SO₄ Ⅴ despite of Na₂SO₄ Ⅳ had low ratios of sodium sulfate and sodium chloride Generally, the dyeing of levelling dyes using recovered salts from farm drainage has similar or low exhaustion than the dyeing of levelling dyes using commercial sodium sulfate.

  • PDF

Recovery of Sodium Sulfate from Farm Dyainage Salt and Using It in Directive Dyeing of Cotton

  • Jiyoon Jung;Kwon, Ghi-Young
    • The International Journal of Costume Culture
    • /
    • v.4 no.2
    • /
    • pp.86-93
    • /
    • 2001
  • Agricultural drainage salt generated during irrigation of crops in San Joaquin Valley, California exceeds 600,000 tons annually and cumulates in the field in a rapid rate. As a result, the waste is taking out more farmlands for salt storage and disposal, imposing serious concerns to environment and local agricultural industry. in searching for a potential solution to reduce or eliminate the waste, this research explored feasibility of producing a value-added product, sodium sulfate, from the waste and utilizing the product in textile dyeing. The result indicated that sodium sulfate could be produced the salt and could be purified by a recrystalization method in a temperature range within the highest and lowest daily temperatures in summer in the valley. Re recovered sodium sulfate samples, with purifies ranging from 67% to 99.91, were compard with commercially available sodium sulfate in directive dyeing of cotton fabrics. Direct Yellow 27 and direct Blue 1 had similar exhaustions among Na₂So₄Ⅰ, Na₂So₄Ⅱ, Na₂So₄Ⅲ and V which had similar ratios of sodium sulfate and sodium chloride in recovered salts. Na₂So₄Ⅳ had high exhaustion despite low ratios of sodium sulfate and sodium chloride. In direct Red 80, exhaustion depends more on the ratios of sodium sulfate and sodium chloride than sodium chloride. Na₂SO₄Ⅳ and Na₂SO₄V with high ratios of sodium chloride had more exhaustion than Na₂So₄and Na₂So₄Ⅲ with low ratios of sodium chloride. Generally, directive dyeing using recovered salts from farm drainage has similar or more excellent exhaustion than directive dyeing using commercial sodium sulfate.

  • PDF

Formation and Preservative Effectiveness of Water-Insoluble Copper Compound in Wood Treated with Copper Sulfate and Sodium Carbonate (황산구리와 탄산나트륨 처리 목재 내의 물불용성 구리화합물의 생성과 방부효력)

  • Kim, Jin-Kyung;Lee, Jong-Shin
    • Journal of the Korea Furniture Society
    • /
    • v.19 no.5
    • /
    • pp.358-364
    • /
    • 2008
  • Wood-inorganic material composite (WIC) was prepared by impregnating wood with copper sulfate ($CuSO_4\;5H_2O$) solution and by immersed wood in sodium carbonate($Na_2CO_3$) solution in order to introduce insoluble copper compounds {copper carbonate hydroxide, $CuCO_3\;Cu(OH)_2$} into the wood to give fungicidal effects in treated-wood. The weight percent gains (WPGs) of treated wood reached maximum value by impregnation of 20% copper sulfate solution and immersion in about 15% sodium carbonate solution for 24 hrs. Inorganic substances were present mainly in the lumina and cross-field pitting of tracheides. These substances were proved to be the insoluble copper carbonate hydroxide against water by the energy dispersive X-ray analyzer in conjunction with a scanning electron microscope (SEM-EDXA). The treated specimens showed high preservative effectiveness because the weight losses were hardly occurred by the fungi degradation test.

  • PDF

Reuse of Sodium Sulfate Recovered from Farm Drainage Salt as Dyeing Builder of Levelling Dyes - Analysis of Color Difference -

  • Jung, Jiyoon
    • The International Journal of Costume Culture
    • /
    • v.6 no.1
    • /
    • pp.11-18
    • /
    • 2003
  • Agricultural drainage salt generated during irrigation of crops in San Joaquin Valley, California, exceeds 600,000 tons annually and cumulates in the field in a rapid rate. As a result, the waste is taking out more farmlands for salt storage and disposal, imposing serious concerns to environment and local agricultural industry. In searching for a potential solution to reduce or eliminate the waste, this research explored feasibility of producing a value-added product, sodium sulfate, from the waste and utilizing the product in textile dyeing. The results indicated that sodium sulfate could be produced from the salt and could be purified by a recrystallization method in a temperature range within the highest and lowest daily temperatures in summer in the valley. The recovered sodium sulfate samples, with purities ranging from 67% to 99.91, were compared with commercially available sodium sulfate in the dyeing of levelling dyes. In nylon fabrics, the salt samples had little color difference in the dyeing with C.I. Acid Yellow 23 and C.I. Acid Blue 158. All salt samples' gray scale was 5 grade. In wool fabrics, the salt samples had little color difference in dyeing with C.I. Acid Yellow 23 and C.I. Arid Blue 158. All salt samples' gray scale was 5 grade. Generally, the dyeing of levelling dyes using recovered salts from farm drainage had little color difference than the dyeing of levelling dyes using commercial sodium sulfate.

  • PDF

Double Salt Precipitation Behavior of Rare Earth by Sodium Sulfate in Sulfuric Liquor of Waste Permanent Magnet Scrap (폐 영구자석 스크랩 황산침출용액으로부터 황산나트륨에 의한 희토류 원소 복염침전 거동 고찰)

  • Yoon, Ho-Sung;Kim, Chul-Joo;Chung, Kyeong Woo;Kim, Ji-Hye;Lee, Eun-Ji;Yoo, Seung-Joon
    • Resources Recycling
    • /
    • v.26 no.5
    • /
    • pp.39-47
    • /
    • 2017
  • In this study, the precipitation of rare earth-sodium sulfate with sodium sulfate was conducted in order to separate rare earth from Fe in rare earth sulfate solution. Neodymium (Nd) was easily precipitated as Nd-sulfate salt with sodium sulfate, on the other hand, excessive sodium sulfate was needed for the precipitation of Dy-sulfate salt. Also neodymium not only promoted the precipitation of dysprosium sulfate salt but also increased recovery of dysprosium sulfate salt in sulfuric acid solution. At the condition of $60^{\circ}C$ precipitation temperature, 3 h reaction time, 7 equivalents sodium sulfate, the recovery of neodymium and dysprosium sulfate salt was 99.7% and 94.3% respectively from the sulfuric acid solution containing Nd of 23.39 mg/ml and Dy of 8.67 mg/ml. Lastly, from the results of separation of Dy to Nd by the method of sulfate double salt, the effect of salting out with NaCl is important to increase the grade of Dy, and 98.7% of Dy grade could be obtained in this study.

Effect of Titanium Sulfate Addition on Crystal Growth of the Flaky α-Al2O3 (황산티타늄의 첨가가 판상 α-Al2O3의 결정성장에 미치는 영향)

  • Park, Byung-Ki;Cho, Sun-Mi;Lee, Jung-Min
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.5 s.276
    • /
    • pp.338-345
    • /
    • 2005
  • To prepare the complex gel of flux and pseudo-boehmite used in precursor of the flaky ${\alpha}-A1_2O_3$ crystal, aqueous solution of the mixture of sodium carbonate and sodium phosphate was added with stirring in aqueous solution of the mixture of sodium sulfate, potassium sulfate and titanium sulfate. The complex gel was dried at $110^{\circ}C$ and was crystallized above $1,050^{\circ}C$, and then the effect of the amount of titanium sulfate on size, morphology, thickness and crystal size distribution of the flaky ${\alpha}-A1_2O_3$ crystal was investigated. Addition of titanium sulfate was prevented the aggregation and generation of twin crystal, and had an effect on the crystal size and the thickness during crystal growth. When the amount of titanium sulfate was more than 6 g, particle size was decreased but was free from crystal twining and aggregation. On the other hand, when the amount of titanium sulfate was lower than 6 g, crystal size was increased but crystal twinning and aggregation were noticed.