The purpose of this study is to determine the effect of concentration and temperature on the bactericidal action of sodium hypochlorite by means of comparing the killing time of several kinds of microorganism on each different concentration and temperature of sodium hypochlorite. The results were as follows: 1. As the concentration of sodium hypochlorite was increased, the bactericidal action of sodium hypochlorite was increased in all specimens. 2. The bactericidal action of sodium hypochlorite at $37^{\circ}C$ was more potent than that of sodium hypochlorite at $21^{\circ}C$. 3. Among the 3 experimental microorganisms, Pseudomonas aeruginosa was the most resistant to sodium hypochlorite, then comes staphylococcus aureus, and the least resistant microorganism was Streptococcus mutans.
Youngseok Ham;Han-Saem Park;Minjun Kim;Tae-Jong Kim
한국미생물·생명공학회지
/
제51권1호
/
pp.32-36
/
2023
In this study, the effect of sodium hypochlorite on biofilm removal was evaluated using three bacterial strains; Aeromonas hydrophila, Streptococcus mutans, and Yersinia enterocolitica. For maximum biofilm removal in 10 min, sodium hypochlorite is required at 1.65, 0.83, and 0.41 g/l for A. hydrophila, S. mutans, and Y. enterocolitica, respectively. Resistance to sodium hypochlorite was increased by the biofilms of all three tested strains, while the change in bactericidal activity according to sodium hypochlorite concentration was strain-specific. Therefore, we aimed to determine the effective concentration of sodium hypochlorite required for hygiene, considering that higher concentrations are needed to remove biofilms than to kill cells.
Background: The spore-forming bacterium Bacillus anthracis causes anthrax, an often-fatal infection in animals. Therefore, a rapid and reliable strategy to decontaminate areas, humans, and livestock from B. anthracis is very critical. Objectives: The aim of this study was performed to evaluate the efficacy of sodium hypochlorite, calcium hypochlorite, and quaternary ammonium compound (QAC) sanitizers, which are commonly used in the food industry, to inhibit spores and vegetative cells of B. anthracis surrogate. Methods: We evaluated the efficacy of sodium hypochlorite, calcium hypochlorite, and a QAC in inhibiting vegetative cells and spores of a B. anthracis surrogate. We treated a 0.1-mL vegetative cell culture or spore solution with 10 mL sanitizer. The samples were serially diluted and cultured. Results: We found that 50 ppm sodium hypochlorite (pH 7), 1 ppm calcium hypochlorite, and 1 ppm QAC completely eliminated the cells in vegetative state. Exposure to 3,000 ppm sodium hypochlorite (pH 7) and 300 ppm calcium hypochlorite significantly eliminated the bacterial spores; however, 50,000 ppm QAC could not eliminate all spores. Conclusions: Calcium hypochlorite and QAC showed better performance than sodium hypochlorite in completely eliminating vegetative cells of B. anthracis surrogate. QAC was ineffective against spores of the B. anthracis surrogate. Among the three commercial disinfectants tested, calcium hypochlorite most effectively eliminated both B. anthracis vegetative cells and spores.
Sodium hypochlorite, used as water disinfectant, is generated by electrolysis of salt. Compared to chlorine gas disinfection, it is free from high-pressure gas regulation and does not generate toxic gas, so it is increasingly used as a safe disinfectant. Despite these advantages, the concentration of sodium hypochlorite decreases with temperature during long-term storage, and the amount of chlorate increases when a large amount is added, it has mainly been applied to small-scale waterworks. To solve this problem, high sodium hypochlorite generation was developed. In this study, the changes of concentration and chlorate of sodium hypochlorite with time has been studied. As a result of the test, it was found that the usable period of sodium hypochlorite produced at a certain temperature or less was increased from 1.5 days to 13 days. Overall, sodium hypochlorite can be applied even in large-scale waterworks, which makes operation more stable and also reduces the disinfection byproducts, thus it contributed greatly to securing water quality.
차아염소산나트륨의 벼 키다리병 종자소독제로서 활용 가능성을 구명하고자, 항균 활성 효과와 종자소독 효과를 연구한 결과, 차아염소산나트륨이 높은 항균 활성을 나타내어 $100{\mu}l/l$ 이상의 농도에서 균총이 형성되지 않았으며 $80{\mu}l/l$ 농도에서도 균 총형성이 현저히 낮았다. 벼 키다리병균 감염 벼 종자를 차아염소산나트륨 0.3% 농도로 8시간 침지 처리 시 종자소독효과가 90%로 높았다. 또한 차아염소산나트륨 0.5%, 0.3% 용액에 감염종자를 각각 12시간 처리하였을 벼 키다리병 발병율이 4.3%, 4.7%로 무처리 발병율 97.3%에 비해 현저히 억제되었으며, 유묘 출현율이 무처리 대비 29.1%, 26.9% 높았다. 그리고 벼 키다리병이 발생하여 자연 감염된 주남벼 종자를 사용하여 차아염소산나트륨 처리한 후 prochloraz 처리와, prochloraz를 처리한 후 차아염소산나트륨 처리의 종자 감염율이 각각 4.0%, 6.3% 로서 prochloraz 단독처리 13.7% 보다 낮은 경향을 보였으며, 벼 키다리병 발병율도 각각 3.7%, 8.3% 로 prochloraz 단독처리 14.3% 보다 낮았다. 아울러 차아염소산나트륨을 처리한 후 prochloraz를 처리한 것에서 더 높은 종자소독효과를 보였다.
Sodium hypochlorite solution has been widely used as endodontic irrigant due to its ability to dissolve pulp tissue debris and its antimicrobial action. This in vitro study was conducted to evaluate the solvent action of sodium hypochlorite solution on vital pulp tissue under various conditions include concentration, exposure time, and temperature. The percentage of weight loss due to pulp tissue dissolution was calculated with weight difference of lyophilized specimens before and after the exposure to test solutions. The results were as follows; Statistical analysis indicated that the ability of both 5.0% and 2.5% sodium hypochlorite solutions to dissolve pulp tissue was significantly greater than that of distilled water, but no significant difference was found between 5.0% and 2.5% sodium hypochlorite solutions. There was no significant increase in the pulp tissue dissolving ability of sodium hypochlorite solutions; as exposure time increased 2 minutes, 5 minutes, and 10 minutes. Of the given temperatures, no significant difference was found in the solvent aciton of sodium hypochlorite solution on pulp tissue between $20^{\circ}C$ (room temperature) and $37^{\circ}C$(body temperature).
Sodium hypochlorite alkaline was tested against Pseudomonas tolaasii causing bacterial blotch on cultivated oyster mushroom (Pleurotus ostreatus). The minimum inhibitory concentration of sodium hypochlorite against P. tolaasii contained active chlorine (AC) at 1.4 mg/l on plate assay. The highest cultivation yield was obtained from the treatment of AC 5.7 mg/l. Treatment of sodium hypochlorite at the rate of higher than AC 11.4 mg/l resulted in reduced yields at the harvest. However, the population of total bacteria on the bed surface treated with AC 5.7 mg/l of sodium hypochlorite was maintained to some extent. Inhibitory concentration against total bacteria on the bed surface was over AC 22.8 mg/l. Mushroom mycelium was damaged and its growth strongly inhibited at the concentration of AC 200 mg/l. Mushroom caps showed yellowish symptom by chemical injury by treatments of AC 74.1 mg/l or higher. Sporocarps infected by P. tolaasii were irrevocable at any concentration of sodium hypochlorite. Routine watering with AC 5.7 mg/l from mushroom initiation to the end of picking resulted in reduced bacterial blotch incidence of 40% and 86% at two mushroom farms. The treatment resulted in higher quality mushroom production compared to that conventionally watered with tap water alone.
Purpose: Since the food wastewater contains a high concentration of nitrogen, it is very important to find a way to efficiently remove it. Research design, data and methodology: A total of four experiments were conducted under different conditions to remove ammonia nitrogen present in the food wastewater. The experiment was designed by adding sodium hypochlorite to the raw food wastewater and varying conditions such as pH control, aeration/precipitation, and stirring. Results: The ammonia nitrogen removal rate in Experiment 1 was about 12% (sodium hypochlorite added), ammonia nitrogen increased about 4.7% in Experiment 2 (sodium hypochlorite added after aeration/precipitation in a bioreaction tank, stirring), and decreased about 52.5% (sodium hypochlorite added after controlling and stirring). Conclusions: When the concentration of sodium hypochlorite was high, ammonia nitrogen was best removed, and the pH was adjusted to 12, and sodium hypochlorite was added after stirring, and the removal was the second best. If the method of this study is further studied and developed, it can be basic data for ammonia nitrogen removal in the future.
The purpose of this study was to evaluate the clinical applications of the Sodium Dichloroisocyanurate effervescent tablet as a routine root canal irrigant by performing several in vitro tests such as $Cl^{-}$ content. cytotoxicity. antimicrobial effect as well as its pH level compared to the equivalent concentration of sodium hypochlorite solution. 1. Sodium Dichloroisocyanurate demonstrated lower level of $Cl^{-}$ concentration than each dilution of sodium hypochlorite solution. Both solution has increased level of $Cl^{-}$ as the concentration of each solution increased. There was no significant change of $Cl^{-}$ concentration in sodium hypochlorite as time goes by. However. $Cl^{-}$ concentration in Sodium Dichloroisocyanurate was increased. 2. The antimicrobial effects of both solutions were increased when their concentrations were increased. One day after dilution. antimicrobial effect of Sodium Dichloroisocyanurate was slightly higher than sodium hypochlorite. however. there was no difference in 1 week dilution solution. One month dilution solution of sodium hypochlorite still retain its activity. but antimicrobial effect of Sodium Dichloroisocyanurate was drastically decreased 1 month after dilution. 3. The cytotoxicity of Sodium Dichloroisocyanurate was rather higher than same concentration of sodium hypochlorite solution until 1 week after dilution. Then in 1 month. cytotoxicity of Sodium Dichloroisocyanurate was decreased than that of 1 week dilution solution. especially 4% Sodium Dichloroisocyanurate solution has almost no toxicity. However. 1% and 2% sodium hypochlorite solution has unchanged moderate degree of cytotoxicity after the dilution. Furthermore. 4% sodium hypochlorite solution showed high level of toxicity. 4. The pH level of Sodium Dichloroisocyanurate showed that the solution was weak acid (pH5). On the other hand. sodium hypochlorite was revealed as a strong alkaline solution (pH12). There was no change in pH following the dilution of each solution. As results. Sodium Dichloroisocyanurate solution fully satisfy the basic requirements as a root canal irrigation solution. However. we strongly recommend to use this solution clinically in low concentration and try to apply into the root canal within 1 week after dilution.
The purpose of this study was to evaluate the cleansing effect of Glyoxide on the dentinal walls of the root canal. Fourty teeth were divided into four groups and the canals in each group were individually enlarged with K-file by step-back technic and irrigated with one of four irrigants. The four used irrigants were Glyoxide (Marion lab. U.S.A.) in combination with 3.5% sodium hypochlorite, 3.5% sodium hypochlorite, 3.5% sodium hypochlorite in combination with 3% hydrogen peroxide and normal saline solution. All the irrigants were used in conjunction with instrumentation as they would be during clinical conditions. After final irrigation, the canals were dried with paper points and the teeth were split longitudinally. The cleaness of canal walls according to the size and the level of canals were evaluated under steroscope by t analysed statistically The results were as follows. 1. The use of 3.5% sodium hyphochlorite in combination with 3.0% hydrogen peroxide revealed the most clean canal surface regardless of the size of canal at apical third of root canal (p < 0.05). 2. Glyoxide in combination with 3.5% sodium hyphchlorite showed no significant difference in cleaning effect of canal surface compared with 3.5% sodium hypochlorite and normal saline solution at the apical third of narrow canal. 3. Glyoxide in combination with 3.5% sodium hypochlorite revealed no significant difference in debridement of canal walls compared with 3.5% sodium hypochlorite in combination with 3% hydrogen peroxide and saline solution at the middle third of narrow and large canals.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.