• Title/Summary/Keyword: Sodium

Search Result 9,783, Processing Time 0.037 seconds

Analysis of media trends related to spent nuclear fuel treatment technology using text mining techniques (텍스트마이닝 기법을 활용한 사용후핵연료 건식처리기술 관련 언론 동향 분석)

  • Jeong, Ji-Song;Kim, Ho-Dong
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.2
    • /
    • pp.33-54
    • /
    • 2021
  • With the fourth industrial revolution and the arrival of the New Normal era due to Corona, the importance of Non-contact technologies such as artificial intelligence and big data research has been increasing. Convergent research is being conducted in earnest to keep up with these research trends, but not many studies have been conducted in the area of nuclear research using artificial intelligence and big data-related technologies such as natural language processing and text mining analysis. This study was conducted to confirm the applicability of data science analysis techniques to the field of nuclear research. Furthermore, the study of identifying trends in nuclear spent fuel recognition is critical in terms of being able to determine directions to nuclear industry policies and respond in advance to changes in industrial policies. For those reasons, this study conducted a media trend analysis of pyroprocessing, a spent nuclear fuel treatment technology. We objectively analyze changes in media perception of spent nuclear fuel dry treatment techniques by applying text mining analysis techniques. Text data specializing in Naver's web news articles, including the keywords "Pyroprocessing" and "Sodium Cooled Reactor," were collected through Python code to identify changes in perception over time. The analysis period was set from 2007 to 2020, when the first article was published, and detailed and multi-layered analysis of text data was carried out through analysis methods such as word cloud writing based on frequency analysis, TF-IDF and degree centrality calculation. Analysis of the frequency of the keyword showed that there was a change in media perception of spent nuclear fuel dry treatment technology in the mid-2010s, which was influenced by the Gyeongju earthquake in 2016 and the implementation of the new government's energy conversion policy in 2017. Therefore, trend analysis was conducted based on the corresponding time period, and word frequency analysis, TF-IDF, degree centrality values, and semantic network graphs were derived. Studies show that before the 2010s, media perception of spent nuclear fuel dry treatment technology was diplomatic and positive. However, over time, the frequency of keywords such as "safety", "reexamination", "disposal", and "disassembly" has increased, indicating that the sustainability of spent nuclear fuel dry treatment technology is being seriously considered. It was confirmed that social awareness also changed as spent nuclear fuel dry treatment technology, which was recognized as a political and diplomatic technology, became ambiguous due to changes in domestic policy. This means that domestic policy changes such as nuclear power policy have a greater impact on media perceptions than issues of "spent nuclear fuel processing technology" itself. This seems to be because nuclear policy is a socially more discussed and public-friendly topic than spent nuclear fuel. Therefore, in order to improve social awareness of spent nuclear fuel processing technology, it would be necessary to provide sufficient information about this, and linking it to nuclear policy issues would also be a good idea. In addition, the study highlighted the importance of social science research in nuclear power. It is necessary to apply the social sciences sector widely to the nuclear engineering sector, and considering national policy changes, we could confirm that the nuclear industry would be sustainable. However, this study has limitations that it has applied big data analysis methods only to detailed research areas such as "Pyroprocessing," a spent nuclear fuel dry processing technology. Furthermore, there was no clear basis for the cause of the change in social perception, and only news articles were analyzed to determine social perception. Considering future comments, it is expected that more reliable results will be produced and efficiently used in the field of nuclear policy research if a media trend analysis study on nuclear power is conducted. Recently, the development of uncontact-related technologies such as artificial intelligence and big data research is accelerating in the wake of the recent arrival of the New Normal era caused by corona. Convergence research is being conducted in earnest in various research fields to follow these research trends, but not many studies have been conducted in the nuclear field with artificial intelligence and big data-related technologies such as natural language processing and text mining analysis. The academic significance of this study is that it was possible to confirm the applicability of data science analysis technology in the field of nuclear research. Furthermore, due to the impact of current government energy policies such as nuclear power plant reductions, re-evaluation of spent fuel treatment technology research is undertaken, and key keyword analysis in the field can contribute to future research orientation. It is important to consider the views of others outside, not just the safety technology and engineering integrity of nuclear power, and further reconsider whether it is appropriate to discuss nuclear engineering technology internally. In addition, if multidisciplinary research on nuclear power is carried out, reasonable alternatives can be prepared to maintain the nuclear industry.

The Chemical Composition of the Nagdong River Downstream Water (낙동강 하류수의 수질조성에 대하여)

  • WON Jong Hun;LEE Bae Jung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.14 no.2
    • /
    • pp.47-58
    • /
    • 1981
  • Relationships between the electrical conductivity and the contents of the chloride, sulfate, calcium, magnesium, sodium, potassium and total major inorganic ions, and between each, chemical conservative constituents were calculated with the data which sampled at the lesions of Mulgeum and between Namji and Wondong from March 1974 to April 1980. Semilogarithmic relations were found between the electrical conductivity and the contents of monovalent ions, and logarithmic relations were found between the electrical conductivity and the contents of divalent ions at the both regions. The relational equations between the electrical conductivity $\lambda_{25}$and the contents of the major inorganic ions at Mulgeum are as follows: $log\;Cl(ppm)\;=\;2.37{\cdot}\lambda_{25}(m{\mho}/cm)+0.733{\pm}0.141$, $log\;SO_4(ppm)=1.12{\cdot}log\lambda_{25}(m{\mho}/cm)+2.14{\pm}0.18$, $log\;Ca(ppm)=0.615{\cdot}log\lambda_{25}(m{\mho}/cm)+1.67{\pm}0.12$, $log\;Mg(ppm)=0.756{\cdot}log\lambda_{25}(m{\mho}/cm)+1.27{\pm}0.11$, $log\;Na(ppm)=2.82{\cdot}\lambda_{25}(m{\mho}/cm)+0.551{\pm}0.133$, $log\;K(ppm)=1.33{\cdot}\lambda_{25}(m{\mho}/cm)+0.136{\pm}0.095$, and total inorganic ions $C(ppm)=399{\cdot}\lambda_{25}(m{\mho}/cm)-0.9{\pm}14.6$. The relational equations between the electrical conductivity ($\lambda_{25}$) and the contents of the major inorganic ions at the region between Namji and Wondong a.e as follows: $log\;Cl(ppm)=4.27{\cdot}\lambda_{25}(m{\mho}/cm)+0.380{\pm}0.138$, $log\;SO_4(ppm)=0.915{\cdot}log\lambda_{25}(m{\mho}/cm)+1.95{\pm}0.18$, $log\;Ca(ppm)=0.756{\cdot}log\lambda_{25}(m{\mho}/cm)+1.74{\pm}0.12$, $log\;Mg(ppm)=1.00{\cdot}log\lambda_{25}(m{\mho}/cm)+1.41{\pm}0.10$. $log\;Na(ppm)=2.47{\cdot}\lambda_{25}(m{\mho}/cm)+0.614{\pm}0.065$, $log\;K(ppm)=1.62{\cdot}\lambda_{25}(m{\mho}/cm)+0.030{\pm}0.060$, and total inorganic ions $C(ppm)=323{\cdot}\lambda_{25}(m{\mho}/cm)+11.7{\pm}9.3$. Logarithmic relations were found between each chemical conservative constituents at Mulgeum and the equations are as follows: $log\;Cl(ppm)=0.711{\cdot}log\;SO_4(ppm)+0.488{\pm}0.206$, $log\;Cl(ppm)=0.337{\cdot}log\;Ca(ppm)+0.822{\pm}0.130$, $log\;Cl(ppm)=0.605{\cdot}log\;Mg(ppm)-0.017{\pm}0.154$, $Cl(ppm)=0.676{\cdot}Na(ppm)+2.31{\pm}4.67$, $log\;Cl(ppm)=0.406{\cdot}log\;K(ppm)-0.092{\pm}0.112$, $log\;SO_4(ppm)=0.378{\cdot}log\;Ca(ppm)+0.721{\pm}0.125$, $log\;SO_4(ppm)=0.462{\cdot}log\;Mg(ppm)+0.107{\pm}0.118$, $log\;SO_4(ppm)=0.592{\cdot}log\;Na(ppm)+0.313{\pm}0.191$, $log\;SO_4(ppm)=0.308{\cdot}log\;K(ppm)-0.019{\pm}0.120$, $Ca(ppm)=0.262{\cdot}Mg(ppm)+0.74{\pm}1.71$. $log\;Ca(ppm)=1.10{\cdot}log\;Na(ppm)-0.243{\pm}0.239$, $Ca(ppm)=0.0737{\cdot}K(ppm)+1.26{\pm}0.73$, $log\;Mg(ppm)=0.0950{\cdot}Na(ppm)+0.587{\pm}0.159$, $log\;Mg(ppm)=0.0518{\cdot}K(ppm)+0.111{\pm}0.102$, and $Na(ppm)=0.0771{\cdot}K(ppm)+1.49{\pm}0.59$. Logarithmic relations were found between each chemical conservative constituents except a relationship between the chloride and calcium contents at the region between Namji and Wondong, and the equations are as follows : $log\;Cl(ppm)=0.312{\cdot}log\;SO_4(ppm)+0.907{\pm}0.210$, $log\;Cl(ppm)=0.458{\cdot}log\;Mg(ppm)+0.135{\pm}0.130$, $Cl(ppm)=0.484{\cdot}logNa(ppm)+0.507{\pm}0.081$, $Cl(ppm)=0.0476{\cdot}K(ppm)+1.41{\pm}0.34$, $log\;SO_4(ppm)=0.886{\cdot}log\;Ca(ppm)+0.046{\pm}0.050$, $log\;SO_4(ppm)=0.422{\cdot}log\;Mg(ppm)+0.139{\pm}0.161$, $log\;SO_4(ppm)=0.374{\cdot}log\;Na(ppm)+0.603{\pm}0.140$, $log\;SO_4(ppm)=0.245{\cdot}log\;K(ppm)+0.023{\pm}0.102$, $log\;Ca(ppm)=0.587{\cdot}log\;Mg(ppm)+0.003{\pm}0.088$, $log\;Ca(ppm)=0.892{\cdot}log\;Na(ppm)+0.028{\pm}0.109$, $log\;Ca(ppm)=0.294{\cdot}log\;K(ppm)-0.001{\pm}0.085$, $log\;Mg(ppm)=0.600{\cdot}log\;Na(ppm)+0.674{\pm}0.120$, $log\;Mg(ppm)=0.440{\cdot}log\;K(ppm)+0.038{\pm}0.081$, and $log\;Na(ppm)=0.522{\cdot}log\;K(ppm)-0.260{\pm}0.072$.

  • PDF

Studies on Sclerotium rolfsii Sacc. isolated from Magnolia kobus DC. in Korea (목련(Magnolia kobus DC.)에서 분리한 흰비단병균(Sclerotium rolfsii Sacc.)에 관한 연구)

  • Kim Kichung
    • Korean journal of applied entomology
    • /
    • v.13 no.3 s.20
    • /
    • pp.105-133
    • /
    • 1974
  • The present study is an attempt to solve the basic problems involved in the control of the Sclerotium disease. The biologic stranis of Sclerotium rolfsii Sacc., pathogen of Sclerotium disease of Magnolia kobus, were differentiated, and the effects of vitamins, various nitrogen and carbon sources on its mycelial growth and sclerotial production have been investigated. In addition the relationship between the cultural filtrate of Penicillium sp. and the growth of Sclerotium rolfsii, the tolerance of its mycelia or sclerotia to moist heat or drought and to Benlate (methyl-(butylcarbamoy 1)-2-benzimidazole carbamate), Tachigaren (3-hydroxy-5-methylisoxazole) and other chemicals were also clarified. The results are summarizee as follows: 1. There were two biologic strains, Type-l and Type-2 among isolates. They differed from each other in the mode of growth and colonial appearance on the media, aversion phenomenon and in their pathogenicity. These two types had similar pathogenicity to the Magnolia kobus and Robinia pseudoacasia, but behaved somewhat differently to the soybaen and cucumber, the Type-l being more virulent. 2. Except potassium nitrite, sodium nitrite and glycine, all of the 12 nitrogen sources tested were utilized for the mycelial growth and sclerotial production of this fungus when 10r/l of thiamine hydrochloride was added in the culture solution. Considering the forms of nitrogen, ammonium nitrogen was more available than nitrate nitrogen for the growth of mycelia, but nitrate nitrogen was better for sclerotia formation. Organic nitrogen showed different availabilities according to compounds used. While nitrite nitrogen was unavailable for both mycelial growth and sclerotial formation whether thiamine hydrochlioride was added or not. 3. Seven kinds of carbon sources examined were not effective in general, as long as thiamine hydrochloride was not added. When thiamine hydrochloride was added, glucose and saccharose exhibited mycelial growth, while rnaltose and soluble starch gave lesser, and xylose, lactose, and glycine showed no effect at all,. In the sclerotial production, all the tested carbon sources, except lactose, were effective, and glucose, maltose, saccharose, and soluble starch gave better results. 4. At the same level of nitrogen, the amount of mycelial growth increased as more carbon Sources were applied but decreased with the increase of nitrogen above 0.5g/1. The amount of sclerotial production decreased wi th the increase of carbon sources. 5. Sclerotium rolfsii was thiamine-defficient and required thiamine 20r/l for maximun growth of mycelia. At a higher concentration of more than 20r/l, however, mycelial growth decreased as the concentration increased, and was inhibited at l50r/l to such a degree of thiamine-free. 6. The effect of the nitrogen sources on the mycelial growth under the presence of thiamine were recognized in the decreasing order of $NH_4NO_3,\;(NH_4)_2SO_4,\;asparagine,\;KNO_3$, and their effects on the sclerotial production in the order of $KNO_3,\;NH_4NO_3,\;asparagine,\;(NH_4)_2SO_4$. The optimum concentration of thiamine was about 12r/l in $KNO_3$ and about 16r/l in asparagine for the growth of mycelia; about 8r/l in $KNO_3$ and $NH_4NO_3$, and 16r/l in asparagine for the production of sclerotia. 7. After the fungus started to grow, the pH value of cultural filtrate rapidly dropped to about 3.5. Hereafter, its rate slowed down as the growth amount increased and did not depreciated below pH2.2. 8. The role of thiamine in the growth of the organism was vital. If thiamine was not added, the combination of biotin, pyridoxine, and inositol did not show any effects on the growth of the organism at all. Equivalent or better mycelial growth was recognized in the combination of thiamine+pyridoxine, thiamine+inositol, thiamine+biotin+pyridoxine, and thiamine+biotin+pyridoxine+inositol, as compared with thiamine alone. In the combinations of thiamine+biotin and thiamine+biotin+inositol, mycelial growth was inhibited. Sclerotial production in dry weight increased more in these combinations than in the medium of thiamine alone. 9. The stimulating effects of the Penicillium cultural filtrate on the mycelial growth was noticed. It increased linearly with the increase of filtrate concentration up to 6-15 ml/50ml basal medium solution. 10. $NH_4NO_3$. as a nitrogen source for mycelial growth was more effective than asparasine regardless of the concentration of cultural filtrate. 11. In the series of fractionations of the cultural filtrate, mycelial growth occured in unvolatile, ether insoluble cation-adsorbed or anion-unadsorbed substance fractions among the fractions of volatile, unvolatile acids, ether soluble organic acids, ether insoluble, cation-adsorbed, cation-unadsorbed, anion-adsorbed and anion-unadsorbed. and anion-un-adsorbed substance tested. Sclerotia were produced only in cation-adsorbed fraction. 12. According to the above results, it was assumed that substances for the mycelial growth and sclerotial formation and inhibitor of sclerotial formation were include::! in cultural filtrate and they were quite different from each other. I was further assumed that the former two substances are un volatile, ether insotuble, and adsorbed to cation-exchange resin, but not adsorbed to anion, whereas the latter is unvolatile, ether insoluble, and not adsorbed to cation or anion-exchange resin. 13. Seven amino acids-aspartic acid, cystine, glysine, histidine, Iycine, tyrosine and dinitroaniline-were detected in the fractions adsorbed to cation-exchange resin by applying the paper chromatography improved with DNP-amino acids. 14. Mycelial growth or sclerotial production was not stimulated significantly by separate or combined application of glutamic acid, aspartic acid, cystine, histidine, and glysine. Tyrosine gave the stimulating effect when applied .alone and when combined with other amino acids in some cases. 15. The tolerance of sclerotia to moist heat varied according to their water content, that was, the dried sclerotia are more tolerant than wet ones. The sclerotia harvested directly from the media, both Type-1 and Type-2, lost viability within 5 minutes at $52^{\circ}C$. Sclerotia dried for 155 days at$26^{\circ}C$ had more tolerance: sclerotia of Type-l were killed in 15 mins. at $52^{\circ}C$ and in 5 mins. at $57^{\circ}C$, and sclerotia of Type-2 were killed in 10 mins. both at $52^{\circ}C$ or $57^{\circ}C$. 16. Cultural sclerotia of both strains maintained good germinability for 132 days at$26^{\circ}C$. Natural sclerotia of them stored for 283 days under air dry condition still had good germinability, even for 443 days: type-l and type-2 maintained $20\%$ and $26.9\%$ germinability, respectively. 17. The tolerance to low temperature increased in the order of mycelia, felts and sclerotia. Mycelia completely lost the ability to grow within 1 week at $7-8^{\circ}C$> below zero, while mycelial felts still maintained the viability after .3 weeks at $7-20^{\circ}C$ below zero, and sclerotia were even more tolerant. 18. Sclerotia of type-l and type-2 were killed when dipped into the $0.05\%$ solution of mercury chloride for 180 mins. and 240 mins. respectively: and in the $0.1\%$ solution, Type-l for 60 mins. and Type-2 for 30 mins. In the $0.125\%$ uspulun solution, Type-l sclerotia were killed in 180 mins., and those of Type-2 were killed for 90 mins. in the$0.125\%$solution. Dipping into the $5\%$ copper sulphate solution or $0.2\%$ solution of Ceresan lime or Mercron for 240 mins. failed to kill sclerotia of either Type-l or Type-2. 19. Inhibitory effect on mycelial growth of Benlate or Tachi-garen in the liquid culture increased as the concentration increased. 6 days after application, obvious inhibitory effects were found in all treatments except Benlate 0.5ppm; but after 12 days, distingushed diflerences were shown among the different concentrations. As compared with the control, mycelial growth was inhibited by $66\%$ at 0.5ppm and by $92\%$ at 2.0ppm of Benlate, and by$54\%$ at 1ppm and about $77\%$ at 1.5ppm or 2.0ppm of Tachigaren. The mycelial growth was inhibited completely at 500ppm of both fungicides, and the formation of sclerotia was checked at 1,000ppm of Benlate ant at 500ppm or 1,000ppm of Tachigaren. 20. Consumptions of glucose or ammonium nitrogen in the culture solution usually increased with the increment of mycelial growth, but when Benlate or Tachigaren were applied, consumptions of glucose or ammonium nitrogen were inhibited with the increment of concentration of the fungicides. At the low concentrations of Benlate (0.5ppm or 1ppm), however, ammonium nitrogen consumption was higher than that of the ontrol. 21. The amount of mycelia produced by consuming 1mg of glucose or ammonium nitrogen in the culture solution was lowered markedly by Benlate or Tachigaren. Such effects were the severest on the third day after their treatment in all concentrations, and then gradually recovered with the progress of time. 22. In the sand culture, mycelial growth was not inhibited. It was indirectly estimated by the amount of $CO_2$ evolved at any concentrations, except in the Tachigaren 100mg/g sand in which mycelial growth was inhibited significantly. Sclerotial production was completely depressed in the 10mg/g sand of Benlate or Tachigaren. 23. There was no visible inhibitory effect on the germination of sclerotia when the sclerotia were dipped in the solution 0.1, 1.0, 100, 1.000ppm of Benlate or Tachigaren for 10 minutes or even 20 minutes.

  • PDF