In current Web 2.0 environment, one of the most core technology is social bookmarking which users put tags and bookmarks to their interesting Web pages. The main purpose of social bookmarking is an effective information service by use of retrieval, grouping and share based on user's bookmark information and tagging result of their interesting Web pages. But, current social bookmarking system uses the number of bookmarks and tag information separately in information retrieval, where the number of bookmarks stand for user's degree of interest on Web contents, information retrieval, and classification serve the purpose of tag information. Because of above reason, social bookmarking system does not utilize effectively the bookmark information and tagging result. This paper proposes a Web contents ranking algorithm combining bookmarks and tag information, based on preceding research on associative tag extraction by tag clustering. Moreover, we conduct a performance evaluation comparing with existing retrieval methodology for efficiency analysis of our proposed algorithm. As the result, social bookmarking system utilizing bookmark with tag, key point of our research, deduces a effective retrieval results compare with existing systems.
In current Web 2.0 environment, one of the most core technology is social bookmarking which users put tags and bookmarks to their interesting Web pages. The main purpose of social bookmarking is an effective information service by use of retrieval, grouping and share based on user's bookmark information and tagging result of their interesting Web pages. But, current social bookmarking system uses the number of bookmarks and tag information separately in information retrieval, where the number of bookmarks stand for user's degree of interest on Web contents, information retrieval, and classification serve the purpose of tag information. Because of above reason, social bookmarking system does not utilize effectively the bookmark information and tagging result. This paper proposes a Web contents ranking algorithm combining bookmarks and tag information, based on preceding research on associative tag extraction by tag clustering. Moreover, we conduct a performance evaluation comparing with existing retrieval methodology for efficiency analysis of our proposed algorithm. As the result, social bookmarking system utilizing bookmark with tag, key point of our research, deduces a effective retrieval results compare with existing systems.
Currently, the rise of social tagging has changing taxonomy to folksonomy. Tag represents a new approach to organizing information. Nonhierarchical classification allows data to be freely gathered, allows easy access, and has the ability to move directly to other content topics. Tag is expected to play a key role in clustering various types of contents, it is expand to network in the common interests among users. First, this paper determine the relationships among user, tags and resources in social tagging system and examine the circumstances of what aspects to users when creating a tag related to features of websites. Therefore, this study uses tags from the social bookmarking service 'del.icio.us' to analyze the features of tag words when adding a new web page to a list. To do this, websites features classified into 7 items, it is known as tag classification related to resources. Experiments were conducted to test the proposed classify method in the area of music, photography and games. This paper attempts to investigate the perspective in which users apply a tag to a webpage and establish the capacity of expanding a social service that offers the opportunity to create a new business model.
Journal of Korea Society of Industrial Information Systems
/
v.13
no.5
/
pp.133-141
/
2008
Social Web is turning current Web into social platform for knowing people and sharing information. This paper takes major social tagging systems as examples, namely delicious, flickr and youtube, to analyze the social phenomena in the Social Web in order to identify the way of mediating and linking social data. A simple Tag Ontology (TO) is proposed to integrate different social tagging data and mediate and link with other related social metadata. Through several machine learning for tagging data, tag groups and similar user groups are extracted, and then used to learn the tagging ontology. A recommender system adopting the tag ontology is also suggested as an applying field.
Web 2.0 has features produced the content through the user of the participation and share. The content production activities have became active since social network service appear. The social bookmark, one of social network service, is service that lets users to store useful content and share bookmarked contents between personal users. Unlike Internet search engines such as Google and Naver, the content stored on social bookmark is searched based on tag keyword information and unnecessary information can be excluded. Social bookmark can make users access to selected content. However, quick access to content that users want is difficult job because of the user of the participation and share. Our paper suggests a method recommending search word to be able to access quickly to content. A method is suggested by using Collaborative Filtering and Jaccard similarity coefficient. The performance of suggested system is verified with experiments that compare by 'Delicious' and "Feeltering' with our system.
Journal of Korea Society of Digital Industry and Information Management
/
v.8
no.3
/
pp.1-10
/
2012
Recently, Social Network services(SNS) is gaining popularity as Facebook and Twitter. Popularity of SNS leads to active service and social data is to be increased. Thus, social search is remarkable that provide more meaningful information to users. but previous studies using social network structure, network distance is calculated using only familiarity. It is familiar as distance on network, has been demonstrated through several experiments. If taking advantage of social context data that users are using SNS to produce, then familiarity will be helpful to evaluate further. In this paper, reflect user's attention through comments and tags, Facebook context is determined using familiarity between friends in SNS. Facebook context is advantageous finding a friend who has a similar propensity users in context of profiles and interests. As a result, we provide a blog post that interest with a close friend. We also assist in the retrieval facilities using Near Field Communication(NFC) technology. By the experiment, we show the proposed soicial search method is more effective than only tag.
Jo, Hyeon;Hong, Jong-Hyun;Choeh, Joon Yeon;Kim, Soung Hie
Journal of Internet Computing and Services
/
v.14
no.2
/
pp.15-24
/
2013
In recent years, the number of social network system has grown rapidly. Among them, social bookmarking system(SBS) is one of the most popular systems. SBS provides network platform which users can share and manage various types of online resources by using tags. In SBS, it can be possible to reflect tag and time in order to enhance the quality of personalized recommendation. In this paper, we proposed recommender system which reflect tag and time at weight generation and similarity calculation. Also we adapted proposed method to real dataset and the result of experiment showed that the our method offers better performance when such information is integrated.
The Journal of the Korea institute of electronic communication sciences
/
v.15
no.4
/
pp.709-716
/
2020
In social media, when posting a post, tag information of an image is generally used because the search is mainly performed using a tag. Users want to expose the post to many people by attaching the tag to the post. Also, the user has trouble posting the tag to be tagged along with the post, and posts that have not been tagged are also posted. In this paper, we propose a method to find an image similar to the input image, extract the label attached to the image, find the posts on instagram, where the label exists as a tag, and recommend other tags in the post. In the proposed method, the label is extracted from the image through the model of the convolutional neural network (CNN) deep learning technique, and the instagram is crawled with the extracted label to sort and recommended tags other than the label. We can see that it is easy to post an image using the recommended tag, increase the exposure of the search, and derive high accuracy due to fewer search errors.
Journal of the Korean BIBLIA Society for library and Information Science
/
v.20
no.1
/
pp.137-150
/
2009
This study has introduced folksonomy to general patterns of folksonomy tags for the university libraries that have practically implemented Library 2.0. From the results, we can see that average about 1.35 tag is used for one content. Typical pattern of the tags follow a power function that frequency of use decreases as No. of uses increases, 79.51% of tags are expressing topic of contents, and 84.61% of tags are tag of social motivation. The results of analysis on increase/decrease rate for tags divided into 4 quarters said that A university library has big differences from quarters while B university library has similar data between quarters. The users have used average 5.25 tags. Trends of the users can be divided into 3 groups according to tagging patterns of the users.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.