• 제목/요약/키워드: Social Sentiment

검색결과 281건 처리시간 0.027초

심리학적 감정과 소셜 웹 자료를 이용한 감성의 실증적 분류 (Empirical Sentiment Classification Using Psychological Emotions and Social Web Data)

  • 장문수
    • 한국지능시스템학회논문지
    • /
    • 제22권5호
    • /
    • pp.563-569
    • /
    • 2012
  • 소셜 웹이 확산되면서 오피니언 마이닝 혹은 감성 분석 연구가 주목을 받고 있다. 감성 분석을 위해서는 감성을 판별하기 위한 감성자원이 제공되어야 한다. 기존 감성 분석에서는 감성의 극성에 대한 강도를 표현하는 방법으로 리소스를 구축하고 이를 통하여 의견의 극성을 결정하였다. 본 논문에서는 의견의 극성뿐만 아니라 긍/부정의 근거가 되는 감성의 카테고리를 구성하고자 한다. 본 논문에서는 합리적인 분류를 위하여 심리학적 감정들을 초기 감성으로 정의한다. 그리고 실제로 소셜 웹에서 사용되는 감성의 분포를 얻기 위하여 소셜 웹의 텍스트를 분석하여 감성 정보를 추출한다. 추출한 감성 정보를 이용하여 초기 감성들을 재분류함으로써 소셜 웹을 위한 감성 카테고리를 구성한다. 본 논문에서는 이 방법을 통하여 23개의 감성 카테고리를 제시한다.

The Motivating Role of Sentiment in ESG Performance: Evidence from Japanese Companies

  • Vuong, Ngoc Bao;Suzuki, Yoshihisa
    • East Asian Economic Review
    • /
    • 제25권2호
    • /
    • pp.125-150
    • /
    • 2021
  • The paper investigates investor sentiment's role in boosting Japanese companies to enhance their environmental, social, and corporate governance (ESG) performance. Using ESG scores of 367 firms between 2005 and 2019 from the ASSET4 database, we find that negative sentiment in the previous year, both firm and market level, can be a stimulation for the company's commitments to its ESG activities next year. Notably, the moderating effect of the business sector and economic cycle on the sentiment-ESG inference are detected in our study differentiating between corporate and market sentiment, which have never been reported before. In detail, we discover that the impact of firm-specific sentiment is less pronounced for high-sensitive ESG firms. On the other hand, the driving force of market sentiment on corporate social behaviors weakens when economic recessions happen. Our results are robust after controlling for potential endogeneity issues and using alternative proxies for market sentiment.

SOPPY : A sentiment detection tool for personal online retailing

  • Sidek, Nurliyana Jaafar;Song, Mi-Hwa
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제9권3호
    • /
    • pp.59-69
    • /
    • 2017
  • The best 'hub' to communicate with the citizen is using social media to marketing the business. However, there has several issued and the most common issue that face in critical is a capital issue. This issue is always highlight because most of automatic sentiment detection tool for Facebook or any other social media price is expensive and they lack of technical skills in order to control the tool. Therefore, in directly they have some obstacle to get faster product's feedback from customers. Thus, the personal online retailing need to struggle to stay in market because they need to compete with successful online company such as G-market. Sentiment analysis also known as opinion mining. Aim of this research is develop the tool that allow user to automatic detect the sentiment comment on social media account. RAD model methodology is chosen since its have several phases could produce more activities and output. Soppy tool will be develop using Microsoft Visual. In order to generate an accurate sentiment detection, the functionality testing will be use to find the effectiveness of this Soppy tool. This proposed automated Soppy Tool would be able to provide a platform to measure the impact of the customer sentiment over the postings on their social media site. The results and findings from the impact measurement could then be use as a recommendation in the developing or reviewing to enhance the capability and the profit to their personal online retailing company.

Framing North Korea on Twitter: Is Network Strength Related to Sentiment?

  • Kang, Seok
    • Journal of Contemporary Eastern Asia
    • /
    • 제20권2호
    • /
    • pp.108-128
    • /
    • 2021
  • Research on the news coverage of North Korea has been paying less attention to social media platforms than to legacy media. An increasing number of social media users post, retweet, share, interpret, and set agendas on North Korea. The accessibility of international users and North Korea's publicity purposes make social media a venue for expression, news diversity, and framing about the nation. This study examined the sentiment of Twitter posts on North Korea from a framing perspective and the relationship between network strengths and sentiment from a social network perspective. Data were collected using two tools: Jupyter Notebook with Python 3.6 for preliminary analysis and NodeXL for main analysis. A total of 11,957 tweets, 10,000 of which were collected using Python and 1,957 tweets using NodeXL, about North Korea between June 20-21, 2020 were collected. Results demonstrated that there was more negative sentiment than positive sentiment about North Korea in the sampled Twitter posts. Some users belonging to small network sizes reached out to others on Twitter to build networks and spread positive information about North Korea. Influential users tended to be impartial to sentiment about North Korea, while some Twitter users with a small network exhibited high percentages of positive words about North Korea. Overall, marginalized populations with network bonding were more likely to express positive sentiment about North Korea than were influencers at the center of networks.

Sentiment Analysis Main Tasks and Applications: A Survey

  • Tedmori, Sara;Awajan, Arafat
    • Journal of Information Processing Systems
    • /
    • 제15권3호
    • /
    • pp.500-519
    • /
    • 2019
  • The blooming of social media has simulated interest in sentiment analysis. Sentiment analysis aims to determine from a specific piece of content the overall attitude of its author in relation to a specific item, product, brand, or service. In sentiment analysis, the focus is on the subjective sentences. Hence, in order to discover and extract the subjective information from a given text, researchers have applied various methods in computational linguistics, natural language processing, and text analysis. The aim of this paper is to provide an in-depth up-to-date study of the sentiment analysis algorithms in order to familiarize with other works done in the subject. The paper focuses on the main tasks and applications of sentiment analysis. State-of-the-art algorithms, methodologies and techniques have been categorized and summarized to facilitate future research in this field.

인스타그램 해시태그를 이용한 사용자 감정 분류 방법 (A Method for User Sentiment Classification using Instagram Hashtags)

  • 남민지;이은지;신주현
    • 한국멀티미디어학회논문지
    • /
    • 제18권11호
    • /
    • pp.1391-1399
    • /
    • 2015
  • In recent times, studies sentiment analysis are being actively conducted by implementing natural language processing technologies for analyzing subjective data such as opinions and attitudes of users expressed on the Web, blogs, and social networking services (SNSs). Conventionally, to classify the sentiments in texts, most studies determine positive/negative/neutral sentiments by assigning polarity values for sentiment vocabulary using sentiment lexicons. However, in this study, sentiments are classified based on Thayer's model, which is psychologically defined, unlike the polarity classification used in opinion mining. In this paper, as a method for classifying the sentiments, sentiment categories are proposed by extracting sentiment keywords for major sentiments by using hashtags, which are essential elements of Instagram. By applying sentiment categories to user posts, sentiments can be determined through the similarity measurement between the sentiment adjective candidates and the sentiment keywords. The test results of the proposed method show that the average accuracy rate for all the sentiment categories was 90.7%, which indicates good performance. If a sentiment classification system with a large capacity is prepared using the proposed method, then it is expected that sentiment analysis in various fields will be possible, such as for determining social phenomena through SNS.

소셜빅데이터를 이용한 온라인 소비자감성지수(e-CCSI) 개발 (Electronic-Composit Consumer Sentiment Index(CCSI) development by Social Bigdata Analysis)

  • 김유신;홍성관;강희주;정승렬
    • 인터넷정보학회논문지
    • /
    • 제18권4호
    • /
    • pp.121-131
    • /
    • 2017
  • 인터넷, 소셜미디어, 모바일 등의 등장이후 소비자들은 개인의 의견을 온라인을 통해 적극적으로 표명하기 시작했고 이의 확산 또한 실시간으로 이루어지고 있다. 인터넷 기반의 다양한 커뮤니케이션 활동들을 통해 생산되는 텍스트는 인터넷을 사용하는 사용자들이 공유하고 공감하는 자원으로서 단순한 소통의 도구를 넘어 분석의 가치가 있는 새로운 정보의 창고가 되고 있다. 세계 각국의 정부와 기업은 인터넷과 소셜미디어를 통해 생산되는 소셜 빅데이터를 활용하여 사회/경제적 문제의 해결과 정부의 정책을 효과적으로 추진하는데 적극 활용하고 있다. 특히 경제와 관련해서는 경기현황에 대한 경제주체들의 움직임을 보다 빠르고 정확하게 분석하고 예측하여 이에 알맞은 정책을 적기에 실시할 수 있도록 다각적인 활동을 펼치고 있다. 본 연구에서는 소셜 미디어에 내재된 소비자의 직적접이고 즉시성 있는 의견을 경제적 측면에서 활용할 수 있는 온라인 소비자감성지수 모형을 제시하고 구현하였다. 이를 위해 한국은행의 소비자동향조사(CSI)와 소비자심리지수(CCSI)를 온라인으로 수행할 수 있는 어휘분류체계(온톨로지)와 감성사전을 구축하고 감성분석을 실시하여 생활형편, 경제상황, 소비와 수입 4가지 영역의 소셜감성지수를 도출하였다. 또한 이들을 결합한 온라인 소비자감성지수(e-CCSI)를 개발하고 소비자심리지수와 비교를 통해 유용성을 확인하였다.

집단지성을 이용한 한글 감성어 사전 구축 (Building a Korean Sentiment Lexicon Using Collective Intelligence)

  • 안정국;김희웅
    • 지능정보연구
    • /
    • 제21권2호
    • /
    • pp.49-67
    • /
    • 2015
  • 최근 다양한 분야에서 빅데이터의 활용과 분석에 대한 중요성이 대두됨에 따라, 뉴스기사와 댓글과 같은 비정형 데이터의 자연어 처리 기술에 기반한 감성 분석에 대한 관심이 높아지고 있다. 하지만, 한국어는 영어와는 달리 자연어 처리가 어려운 교착어로써 정보화나 정보시스템에의 활용이 미흡한 실정이다. 이에 본 연구는 감성 분석에 활용이 가능한 감성어 사전을 집단지성으로 구축하였고, 누구나 연구와 실무에 사용하도록 API서비스 플랫폼을 개방하였다(www.openhangul.com). 집단지성의 활용을 위해 국내 최대 대학생 소셜네트워크 사이트에서 대학생들을 대상으로 단어마다 긍정, 중립, 부정에 대한 투표를 진행하였다. 그리고 집단지성의 효율성을 높이기 위해 감성을 '정의'가 아닌 '분류'하는 방식인 폭소노미의 '사람들에 의한 분류법'이라는 개념을 적용하였다. 총 517,178(+)의 국어사전 단어 중 불용어 형태를 제외한 후 감성 표현이 가능한 명사, 형용사, 동사, 부사를 우선 순위로 하여, 현재까지 총 35,000(+)번의 단어에 대한 투표를 진행하였다. 본 연구의 감성어 사전은 집단지성의 참여자가 누적됨에 따라 신뢰도가 높아지도록 설계하여, 시간을 축으로 사람들이 단어에 대해 인지하는 감성의 변화도 섬세하게 반영하는 장점이 있다. 따라서 본 연구는 앞으로도 감성어 사전 구축을 위한 투표를 계속 진행할 예정이며, 현재 제공하고 있는 감성어 사전, 기본형 추출, 카테고리 추출 외에도 다양한 자연어 처리에 응용이 가능한 API들도 제공할 계획이다. 기존의 연구들이 감성 분석이나 감성어 사전의 구축과 활용에 대한 방안을 제안하는 것에만 한정되어 있는 것과는 달리, 본 연구는 집단지성을 실제로 활용하여 연구와 실무에 활용이 가능한 자원을 구축하여 개방하여 공유한다는 차별성을 가지고 있다. 더 나아가, 집단지성과 폭소노미의 특성을 결합하여 한글 감성어 사전을 구축한 새로운 시도가 향후 한글 자연어 처리의 발전에 있어 다양한 분야들의 융합적인 연구와 실무적인 참여를 이끌어 개방적 협업의 새로운 방향과 시사점을 제시 할 수 있을 것이라 기대한다.

SNS상의 비정형 빅데이터로부터 감성정보 추출 기법 (An Extraction Method of Sentiment Infromation from Unstructed Big Data on SNS)

  • 백봉현;하일규;안병철
    • 한국멀티미디어학회논문지
    • /
    • 제17권6호
    • /
    • pp.671-680
    • /
    • 2014
  • Recently, with the remarkable increase of social network services, it is necessary to extract interesting information from lots of data about various individual opinions and preferences on SNS(Social Network Service). The sentiment information can be applied to various fields of society such as politics, public opinions, economics, personal services and entertainments. To extract sentiment information, it is necessary to use processing techniques that store a large amount of SNS data, extract meaningful data from them, and search the sentiment information. This paper proposes an efficient method to extract sentiment information from various unstructured big data on social networks using HDFS(Hadoop Distributed File System) platform and MapReduce functions. In experiments, the proposed method collects and stacks data steadily as the number of data is increased. When the proposed functions are applied to sentiment analysis, the system keeps load balancing and the analysis results are very close to the results of manual work.

Competitive intelligence in Korean Ramen Market using Text Mining and Sentiment Analysis

  • Kim, Yoosin;Jeong, Seung Ryul
    • 인터넷정보학회논문지
    • /
    • 제19권1호
    • /
    • pp.155-166
    • /
    • 2018
  • These days, online media, such as blogospheres, online communities, and social networking sites, provides the uncountable user-generated content (UGC) to discover market intelligence and business insight with. The business has been interested in consumers, and constantly requires the approach to identify consumers' opinions and competitive advantage in the competing market. Analyzing consumers' opinion about oneself and rivals can help decision makers to gain in-depth and fine-grained understanding on the human and social behavioral dynamics underlying the competition. In order to accomplish the comparison study for rival products and companies, we attempted to do competitive analysis using text mining with online UGC for two popular and competing ramens, a market leader and a market follower, in the Korean instant noodle market. Furthermore, to overcome the lack of the Korean sentiment lexicon, we developed the domain specific sentiment dictionary of Korean texts. We gathered 19,386 pieces of blogs and forum messages, developed the Korean sentiment dictionary, and defined the taxonomy for categorization. In the context of our study, we employed sentiment analysis to present consumers' opinion and statistical analysis to demonstrate the differences between the competitors. Our results show that the sentiment portrayed by the text mining clearly differentiate the two rival noodles and convincingly confirm that one is a market leader and the other is a follower. In this regard, we expect this comparison can help business decision makers to understand rich in-depth competitive intelligence hidden in the social media.