With the development of social network services, graph structures have been utilized to represent relationships among objects in various applications. Recently, a demand of subgraph matching in real-time graph streams has been increased. Therefore, an efficient approximate Top-k subgraph matching scheme for low latency in real-time graph streams is required. In this paper, we propose an approximate Top-k subgraph matching scheme considering data reuse in graph stream environments. The proposed scheme utilizes the distributed stream processing platform, called Storm to handle a large amount of stream data. We also utilize an existing data reuse scheme to decrease stream processing costs. We propose a distance based summary indexing technique to generate Top-k subgraph matching results. The proposed summary indexing technique costs very low since it only stores distances among vertices that are selected in advance. Finally, we provide k subgraph matching results to users by performing an approximate Top-k matching on the summary indexing. In order to show the superiority of the proposed scheme, we conduct various performance evaluations in diverse real world datasets.
For real-time social networking service, mobile interaction in a usable-unified-ubiquitous (U3) web service was studied. Both as a convenient mobile HCI for real-time social networks and as indexing keys to metadata information in ubiquitous web service, the multi-lingual single-character domain names (e.g. 김.net, 이.net, 가.net, ㄱ.net, ㄴ.net, ㅎ.net, ㅏ.net, ㅔ.net, ㄱ.com, ㅎ.com) are convenient mobile interfaces when searching for social information and registering information. We introduce the sketched design goals and experience of mobile interaction in Korea, Japan and China, with the implementation of real-time social networking service as an example of U3 Web service. We also introduce the possibility of extending the application to the metadata directory service in IP-USN (IP-based Ubiquitous Sensor Network) for a unified information management in the service of social networking and sensor networking.
Recently, increased use of the internet resulted in generation of large and diverse types of data due to increased use of social media, expansion of a convergence of among industries, use of the various smart device. We are facing difficulties to manage and analyze the data using previous data processing techniques since the volume of the data is huge, form of the data varies and evolves rapidly. In other words, we need to study a new approach to solve such problems. Many approaches are being studied on this issue, and we are describing an effective design and development to build indexing engine of big data platform. Our goal is to build a system that could effectively manage for huge data set which exceeds previous data processing range, and that could reduce data analysis time. We used large SNMP log data for an experiment, and tried to reduce data analysis time through the fast indexing and searching approach. Also, we expect our approach could help analyzing the user data through visualization of the analyzed data expression.
Journal of the Korean Society for Library and Information Science
/
v.42
no.4
/
pp.95-112
/
2008
In contrast to traditional taxonomy, folksonomy is generated not only by experts but also by creators and consumers of the content. Folksonomy is the practice and method of collaboratively creating and managing tags to annotate and categorize content. It is also known as collaborative tagging or social indexing. Folksonomy is also used to link to create social network that connect people to people who share same interest. Folksonomy users can generally discover the contents by which the tag sets of another user who tends to interpret contents in a way that makes sense to them. Firstly, this study consider the significance and some critical issues about folksonomy. Secondly, analyze special features of Korean academic site's folksonomy, which is managed by academic information site. Accordingly consider the directions of development about folksonomy system.
With the spread of social media and mobile devices, people spend more time on online than ever before. As more people participate in various online activities, much research has been conducted on how to make use of the time effectively and productively. In this paper, we propose two methods which can be used to extract highlights and make searchable media indexes using online social data. For highlight extraction, we collected the comments from the online baseball broadcasting website. We adopted peak-finding algorithm to analyze the frequency of comments uploaded on the comments section of the website. For each indexes, we collected postings from soap opera forums provided by a popular web service called DCInside. We extracted all the instances when a character's name is mentioned in postings users upload after watching TV, which can be used to create indexes when the character appears on screen for the given episode of the soap opera The evaluation results shows the possibility of the crowdsourcing-based media interaction for both highlight extraction and index building.
Journal of the Korean Society for information Management
/
v.27
no.1
/
pp.41-60
/
2010
This study aims to analyze the properties of the tags used in the fiction genre, the structural aspect of the patterns and the contents of the tags by utilizing LibraryThing, where the tags are assigned in work units of FRBR. A comparative analysis was conducted in terms of the level of association between the descriptive terms in bibliography and LCSH terms. The study also examined the sources of the tags not included in the bibliographic descriptions or LCSHs, what aspects of work they represented, and the terms used as tags in relation to the work. By restricting the study to a single genre, a number of tags that reflected the characteristics of fiction (three elements of the fiction which are theme, plot, style and three elements of the fiction composition which are character, event, setting) were extracted. This study finds out the role of the tag making up the taxonomy and proposes a new direction for the tagging system by demonstrating the possibility of using tags as facets in information organization and retrieval.
Journal of Information Science Theory and Practice
/
v.6
no.2
/
pp.46-61
/
2018
The mobile social networking application Instagram is a well-known platform for sharing photos and videos. Since it is folksonomy-oriented, it provides the possibility for image indexing and knowledge representation through the assignment of hashtags to posted content. The purpose of this study is to analyze how Instagram users tag their pictures regarding different kinds of picture and hashtag categories. For such a content analysis, a distinction is made between Food, Pets, Selfies, Friends, Activity, Art, Fashion, Quotes (captioned photos), Landscape, and Architecture image categories as well as Content-relatedness (ofness, aboutness, and iconology), Emotiveness, Isness, Performativeness, Fakeness, "Insta"-Tags, and Sentences as hashtag categories. Altogether, 14,649 hashtags of 1,000 Instagram images were intellectually analyzed (100 pictures for each image category). Research questions are stated as follows: RQ1: Are there any differences in relative frequencies of hashtags in the picture categories? On average the number of hashtags per picture is 15. Lowest average values received the categories Selfie (average 10.9 tags per picture) and Friends (average 11.7 tags per picture); for highest, the categories Pet (average 18.6 tags), Fashion (average 17.6 tags), and Landscape (average 16.8 tags). RQ2: Given a picture category, what is the distribution of hashtag categories; and given a hashtag category, what is the distribution of picture categories? 60.20% of all hashtags were classified into the category Content-relatedness. Categories Emotiveness (about 4.38%) and Sentences (0.99%) were less often frequent. RQ3: Is there any association between image categories and hashtag categories? A statistically significant association between hashtag categories and image categories on Instagram exists, as a chi-square test of independence shows. This study enables a first broad overview on the tagging behavior of Instagram users and is not limited to a specific hashtag or picture motive, like previous studies.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.15
no.9
/
pp.3102-3119
/
2021
In the modern rapid growing web era, the scope of web publication is about accessing the web resources. Due to the increased size of web, the search engines face many challenges, in indexing the web pages as well as producing result to the user query. Methodologies discussed in literatures towards clustering web documents suffer in producing higher clustering accuracy. Problem is mitigated using, the proposed scheme, Semantic Conceptual Relational Similarity (SCRS) based clustering algorithm which, considers the relationship of any document in two ways, to measure the similarity. One is with the number of semantic relations of any document class covered by the input document and the second is the number of conceptual relation the input document covers towards any document class. With a given data set Ds, the method estimates the SCRS measure for each document Di towards available class of documents. As a result, a class with maximum SCRS is identified and the document is indexed on the selected class. The SCRS measure is measured according to the semantic relevancy of input document towards each document of any class. Similarly, the input query has been measured for Query Relational Semantic Score (QRSS) towards each class of documents. Based on the value of QRSS measure, the document class is identified, retrieved and ranked based on the QRSS measure to produce final population. In both the way, the semantic measures are estimated based on the concepts available in semantic ontology. The proposed method had risen efficient result in indexing as well as search efficiency also has been improved.
Universities need to contribute to the sustainable development of their communities, with a primary purpose of education and research. Recently, the Economic and Social Impact(ESI), a measure of sustainability of universities, has been emphasized, but there is a lack of research on this. Therefore, this study examined the ESI indicators of existing universities and introduced cases of ESI development applied to K-university. In this study, we reviewed the ESI literature, analyzed domestic and international cases, and conduct an analysis of economic effect. As a result, we developed ESI indicators that includes both supply and demand side effects, and proposed an ESI assessment method that distinguishes the influence of universities and their impact on the community. Therefore, it is meaningful that this is a case of how universities measured ESI and how to use it. Future research will require advancement of the university's ESI assessment methodology, development of multipliers appropriate for the university, and comprehensive ESI indexing.
This paper, as a conlcusion to this special issue, presents the future work that is being carried out at NTU Singapore in collaboration with Microsoft Research and Microsoft Azure for Research. For our research team the real frontier research in world histories starts when we want to use computers to structure historical information, model historical narratives, simulate theoretical large scale hypotheses, and incent world historians to use virtual assistants and/or engage them in teamwork using social media and/or seduce them with immersive spaces to provide new learning and sharing environments, in which new things can emerge and happen: "You do not know which will be the next idea. Just repeating the same things is not enough" (Carlo Rubbia, 1984 Nobel Price in Physics, at Nanyang Technological University on January 19, 2016).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.