• Title/Summary/Keyword: Social Indexing

Search Result 40, Processing Time 0.024 seconds

Approximate Top-k Subgraph Matching Scheme Considering Data Reuse in Large Graph Stream Environments (대용량 그래프 스트림 환경에서 데이터 재사용을 고려한 근사 Top-k 서브 그래프 매칭 기법)

  • Choi, Do-Jin;Bok, Kyoung-Soo;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.8
    • /
    • pp.42-53
    • /
    • 2020
  • With the development of social network services, graph structures have been utilized to represent relationships among objects in various applications. Recently, a demand of subgraph matching in real-time graph streams has been increased. Therefore, an efficient approximate Top-k subgraph matching scheme for low latency in real-time graph streams is required. In this paper, we propose an approximate Top-k subgraph matching scheme considering data reuse in graph stream environments. The proposed scheme utilizes the distributed stream processing platform, called Storm to handle a large amount of stream data. We also utilize an existing data reuse scheme to decrease stream processing costs. We propose a distance based summary indexing technique to generate Top-k subgraph matching results. The proposed summary indexing technique costs very low since it only stores distances among vertices that are selected in advance. Finally, we provide k subgraph matching results to users by performing an approximate Top-k matching on the summary indexing. In order to show the superiority of the proposed scheme, we conduct various performance evaluations in diverse real world datasets.

Mobile Interaction in a Usable-Unified-Ubiquitous (U3) Web Service for Real-time Social Networking Service (실시간 소셜 네트워크 서비스를 위한 사용 가능한-통합적-유비쿼터스 (U3) 웹 서비스에서의 모바일 상호작용)

  • Kim, Yung-Bok;Kim, Chul-Su
    • The KIPS Transactions:PartB
    • /
    • v.15B no.3
    • /
    • pp.219-228
    • /
    • 2008
  • For real-time social networking service, mobile interaction in a usable-unified-ubiquitous (U3) web service was studied. Both as a convenient mobile HCI for real-time social networks and as indexing keys to metadata information in ubiquitous web service, the multi-lingual single-character domain names (e.g. 김.net, 이.net, 가.net, ㄱ.net, ㄴ.net, ㅎ.net, ㅏ.net, ㅔ.net, ㄱ.com, ㅎ.com) are convenient mobile interfaces when searching for social information and registering information. We introduce the sketched design goals and experience of mobile interaction in Korea, Japan and China, with the implementation of real-time social networking service as an example of U3 Web service. We also introduce the possibility of extending the application to the metadata directory service in IP-USN (IP-based Ubiquitous Sensor Network) for a unified information management in the service of social networking and sensor networking.

A Design and Development of Big Data Indexing and Search System using Lucene (루씬을 이용한 빅데이터 인덱싱 및 검색시스템의 설계 및 구현)

  • Kim, DongMin;Choi, JinWoo;Woo, ChongWoo
    • Journal of Internet Computing and Services
    • /
    • v.15 no.6
    • /
    • pp.107-115
    • /
    • 2014
  • Recently, increased use of the internet resulted in generation of large and diverse types of data due to increased use of social media, expansion of a convergence of among industries, use of the various smart device. We are facing difficulties to manage and analyze the data using previous data processing techniques since the volume of the data is huge, form of the data varies and evolves rapidly. In other words, we need to study a new approach to solve such problems. Many approaches are being studied on this issue, and we are describing an effective design and development to build indexing engine of big data platform. Our goal is to build a system that could effectively manage for huge data set which exceeds previous data processing range, and that could reduce data analysis time. We used large SNMP log data for an experiment, and tried to reduce data analysis time through the fast indexing and searching approach. Also, we expect our approach could help analyzing the user data through visualization of the analyzed data expression.

An Analysis of the Foxonomy Constructed at Research Information Service and Future Perspectives (학술정보서비스의 폭소노미 분석 연구)

  • Cho, Ja-Ne
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.42 no.4
    • /
    • pp.95-112
    • /
    • 2008
  • In contrast to traditional taxonomy, folksonomy is generated not only by experts but also by creators and consumers of the content. Folksonomy is the practice and method of collaboratively creating and managing tags to annotate and categorize content. It is also known as collaborative tagging or social indexing. Folksonomy is also used to link to create social network that connect people to people who share same interest. Folksonomy users can generally discover the contents by which the tag sets of another user who tends to interpret contents in a way that makes sense to them. Firstly, this study consider the significance and some critical issues about folksonomy. Secondly, analyze special features of Korean academic site's folksonomy, which is managed by academic information site. Accordingly consider the directions of development about folksonomy system.

Extraction of Highlights and Search Indexes of Digital Media by Analyzing Online Activity Data (온라인 활동 데이터를 활용한 영상 콘텐츠의 하이라이트와 검색 인덱스 추출 기법에 대한 연구)

  • Ha, Seyong;Kim, Dongwhan;Lee, Joonhwan
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1564-1573
    • /
    • 2016
  • With the spread of social media and mobile devices, people spend more time on online than ever before. As more people participate in various online activities, much research has been conducted on how to make use of the time effectively and productively. In this paper, we propose two methods which can be used to extract highlights and make searchable media indexes using online social data. For highlight extraction, we collected the comments from the online baseball broadcasting website. We adopted peak-finding algorithm to analyze the frequency of comments uploaded on the comments section of the website. For each indexes, we collected postings from soap opera forums provided by a popular web service called DCInside. We extracted all the instances when a character's name is mentioned in postings users upload after watching TV, which can be used to create indexes when the character appears on screen for the given episode of the soap opera The evaluation results shows the possibility of the crowdsourcing-based media interaction for both highlight extraction and index building.

A Study on the Application of LibraryThing Folksonomy Tags through the Analysis of Elements related with Work (저작관련 요소분석을 통한 폭소노미 태그의 활용 방안에 관한 연구: LibraryThing을 중심으로)

  • Kim, Dong-Suk;Chung, Yeon-Kyoung
    • Journal of the Korean Society for information Management
    • /
    • v.27 no.1
    • /
    • pp.41-60
    • /
    • 2010
  • This study aims to analyze the properties of the tags used in the fiction genre, the structural aspect of the patterns and the contents of the tags by utilizing LibraryThing, where the tags are assigned in work units of FRBR. A comparative analysis was conducted in terms of the level of association between the descriptive terms in bibliography and LCSH terms. The study also examined the sources of the tags not included in the bibliographic descriptions or LCSHs, what aspects of work they represented, and the terms used as tags in relation to the work. By restricting the study to a single genre, a number of tags that reflected the characteristics of fiction (three elements of the fiction which are theme, plot, style and three elements of the fiction composition which are character, event, setting) were extracted. This study finds out the role of the tag making up the taxonomy and proposes a new direction for the tagging system by demonstrating the possibility of using tags as facets in information organization and retrieval.

Content Description on a Mobile Image Sharing Service: Hashtags on Instagram

  • Dorsch, Isabelle
    • Journal of Information Science Theory and Practice
    • /
    • v.6 no.2
    • /
    • pp.46-61
    • /
    • 2018
  • The mobile social networking application Instagram is a well-known platform for sharing photos and videos. Since it is folksonomy-oriented, it provides the possibility for image indexing and knowledge representation through the assignment of hashtags to posted content. The purpose of this study is to analyze how Instagram users tag their pictures regarding different kinds of picture and hashtag categories. For such a content analysis, a distinction is made between Food, Pets, Selfies, Friends, Activity, Art, Fashion, Quotes (captioned photos), Landscape, and Architecture image categories as well as Content-relatedness (ofness, aboutness, and iconology), Emotiveness, Isness, Performativeness, Fakeness, "Insta"-Tags, and Sentences as hashtag categories. Altogether, 14,649 hashtags of 1,000 Instagram images were intellectually analyzed (100 pictures for each image category). Research questions are stated as follows: RQ1: Are there any differences in relative frequencies of hashtags in the picture categories? On average the number of hashtags per picture is 15. Lowest average values received the categories Selfie (average 10.9 tags per picture) and Friends (average 11.7 tags per picture); for highest, the categories Pet (average 18.6 tags), Fashion (average 17.6 tags), and Landscape (average 16.8 tags). RQ2: Given a picture category, what is the distribution of hashtag categories; and given a hashtag category, what is the distribution of picture categories? 60.20% of all hashtags were classified into the category Content-relatedness. Categories Emotiveness (about 4.38%) and Sentences (0.99%) were less often frequent. RQ3: Is there any association between image categories and hashtag categories? A statistically significant association between hashtag categories and image categories on Instagram exists, as a chi-square test of independence shows. This study enables a first broad overview on the tagging behavior of Instagram users and is not limited to a specific hashtag or picture motive, like previous studies.

Semantic Conceptual Relational Similarity Based Web Document Clustering for Efficient Information Retrieval Using Semantic Ontology

  • Selvalakshmi, B;Subramaniam, M;Sathiyasekar, K
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.9
    • /
    • pp.3102-3119
    • /
    • 2021
  • In the modern rapid growing web era, the scope of web publication is about accessing the web resources. Due to the increased size of web, the search engines face many challenges, in indexing the web pages as well as producing result to the user query. Methodologies discussed in literatures towards clustering web documents suffer in producing higher clustering accuracy. Problem is mitigated using, the proposed scheme, Semantic Conceptual Relational Similarity (SCRS) based clustering algorithm which, considers the relationship of any document in two ways, to measure the similarity. One is with the number of semantic relations of any document class covered by the input document and the second is the number of conceptual relation the input document covers towards any document class. With a given data set Ds, the method estimates the SCRS measure for each document Di towards available class of documents. As a result, a class with maximum SCRS is identified and the document is indexed on the selected class. The SCRS measure is measured according to the semantic relevancy of input document towards each document of any class. Similarly, the input query has been measured for Query Relational Semantic Score (QRSS) towards each class of documents. Based on the value of QRSS measure, the document class is identified, retrieved and ranked based on the QRSS measure to produce final population. In both the way, the semantic measures are estimated based on the concepts available in semantic ontology. The proposed method had risen efficient result in indexing as well as search efficiency also has been improved.

A Case Study on Economic and Social Impact of K-University (ESI(사회경제적 영향)에 관한 K대학의 사례연구)

  • Park, Tae-Young;Shin, Hyo-Kyun
    • Journal of Industrial Convergence
    • /
    • v.17 no.4
    • /
    • pp.95-102
    • /
    • 2019
  • Universities need to contribute to the sustainable development of their communities, with a primary purpose of education and research. Recently, the Economic and Social Impact(ESI), a measure of sustainability of universities, has been emphasized, but there is a lack of research on this. Therefore, this study examined the ESI indicators of existing universities and introduced cases of ESI development applied to K-university. In this study, we reviewed the ESI literature, analyzed domestic and international cases, and conduct an analysis of economic effect. As a result, we developed ESI indicators that includes both supply and demand side effects, and proposed an ESI assessment method that distinguishes the influence of universities and their impact on the community. Therefore, it is meaningful that this is a case of how universities measured ESI and how to use it. Future research will require advancement of the university's ESI assessment methodology, development of multipliers appropriate for the university, and comprehensive ESI indexing.

Provenance and Validation from the Humanities to Automatic Acquisition of Semantic Knowledge and Machine Reading for News and Historical Sources Indexing/Summary

  • NANETTI, Andrea;LIN, Chin-Yew;CHEONG, Siew Ann
    • Asian review of World Histories
    • /
    • v.4 no.1
    • /
    • pp.125-132
    • /
    • 2016
  • This paper, as a conlcusion to this special issue, presents the future work that is being carried out at NTU Singapore in collaboration with Microsoft Research and Microsoft Azure for Research. For our research team the real frontier research in world histories starts when we want to use computers to structure historical information, model historical narratives, simulate theoretical large scale hypotheses, and incent world historians to use virtual assistants and/or engage them in teamwork using social media and/or seduce them with immersive spaces to provide new learning and sharing environments, in which new things can emerge and happen: "You do not know which will be the next idea. Just repeating the same things is not enough" (Carlo Rubbia, 1984 Nobel Price in Physics, at Nanyang Technological University on January 19, 2016).