• 제목/요약/키워드: Social Classification

검색결과 942건 처리시간 0.026초

세대사회학의 가능성과 한계 - 세대개념의 분석적 구분 - (Possibilities and limitations of the sociology of generations - an analytical classification of the generation concept)

  • 전상진
    • 한국인구학
    • /
    • 제25권2호
    • /
    • pp.193-230
    • /
    • 2002
  • 지난 수년 동안 세대현상에 대한 관심이 증대하였다. 이와 같은 발전은 무엇보다 기존의 집단적 정체성의 형성에 영향을 미치는 요인들과 조건들이 변화하였기 때문이다. 그러나 세대에 대한 일반적 관심의 상승에도 불구하고 이에 대한 과학적 탐구는 일종의 저발전 상태에서 벗어나지 못하는 실정이다. 이는 무엇보다 개념 자체의 모호성과 다의성에 기인한다. 이 글의 목적은 세대개념에 내재된 다의성과 모호함을 개념의 사용맥락에 따라 분석적 구분을 통해 통제함으로써, 사회변동과 혁신을 파악할 수 있는 세대개념과 세대사회학의 위상을 재정립하는데 있다.

Detection of Depression Trends in Literary Cyber Writers Using Sentiment Analysis and Machine Learning

  • Faiza Nasir;Haseeb Ahmad;CM Nadeem Faisal;Qaisar Abbas;Mubarak Albathan;Ayyaz Hussain
    • International Journal of Computer Science & Network Security
    • /
    • 제23권3호
    • /
    • pp.67-80
    • /
    • 2023
  • Rice is an important food crop for most of the population in Nowadays, psychologists consider social media an important tool to examine mental disorders. Among these disorders, depression is one of the most common yet least cured disease Since abundant of writers having extensive followers express their feelings on social media and depression is significantly increasing, thus, exploring the literary text shared on social media may provide multidimensional features of depressive behaviors: (1) Background: Several studies observed that depressive data contains certain language styles and self-expressing pronouns, but current study provides the evidence that posts appearing with self-expressing pronouns and depressive language styles contain high emotional temperatures. Therefore, the main objective of this study is to examine the literary cyber writers' posts for discovering the symptomatic signs of depression. For this purpose, our research emphases on extracting the data from writers' public social media pages, blogs, and communities; (3) Results: To examine the emotional temperatures and sentences usage between depressive and not depressive groups, we employed the SentiStrength algorithm as a psycholinguistic method, TF-IDF and N-Gram for ranked phrases extraction, and Latent Dirichlet Allocation for topic modelling of the extracted phrases. The results unearth the strong connection between depression and negative emotional temperatures in writer's posts. Moreover, we used Naïve Bayes, Support Vector Machines, Random Forest, and Decision Tree algorithms to validate the classification of depressive and not depressive in terms of sentences, phrases and topics. The results reveal that comparing with others, Support Vectors Machines algorithm validates the classification while attaining highest 79% f-score; (4) Conclusions: Experimental results show that the proposed system outperformed for detection of depression trends in literary cyber writers using sentiment analysis.

새로운 한의학 병인분류체계의 연구 (The New Etiologic Classification System of Korean Medicine)

  • 박해모;이기남;황귀서;신용철;고성규;이해웅;이영준;임병묵;이상재;정명수;장보형;박선주;이선동
    • 대한예방한의학회지
    • /
    • 제17권2호
    • /
    • pp.47-68
    • /
    • 2013
  • Objectives : This research aimed to develop a new etiologic classification for traditional Korean Medicine in order to respond to the social and environmental change. Methods : We reviewed the existing theories on etiological classification for East Asian Medicine thoroughly and discussed the problems and limitations. Based on the experts' consensus, we abstracted disease factors and etiologic items. Results : The disease factors are classified into three parts: the human body, the environment, and the interaction between the human body and the environment. We defined them as the inner factor, the external factor, and the interaction between the inner and the external factors. The inner factor is free from the influence of the environment, and it causes diseases solely from the components of the human body. It is divided into genetic factors. The external factor is defined as a case when a disease occurs due to a factor outside the human body and includes external injuries, environmental pollution, and natural disasters. The interaction between the inner and the external factors is a disease factor that causes diseases by the interaction of the human body and the environment and includes emotions, habits, and social environment. As a result of the analysis, it was possible to see the meanings at a single glance as the scattered and fractional meanings were integrated with focus on medicinal herbs, but the increasing number of analyzed medicinal herbs tended to more and more complicate their relationships, thus, requiring additional work like filtering. Conclusions : The new etiologic classification of Korean Medicine fully reflects the perspectives on life in Korean Medicine while embracing the changes in modem society. Also, by avoiding the usage of ambivalent terms and wrong classification methods, the new classification system constructs intuitive and concise etiology and improves usability in clinical medicine.

우리나라 전통민가 평면유형분류의 변천에 대한 고찰 (The Study on the transition in plane type classification of Korean traditional houses)

  • 조원석
    • 한국농촌건축학회논문집
    • /
    • 제1권3호
    • /
    • pp.3-12
    • /
    • 1999
  • This research studies into the plane type classification and reviews its transition which has been used in the basic research of the traditional houses on the korean peninsula. The conclusions are as follows. Until now, plane type classification of traditional houses on the Korean peninsula were used to explain the characteristics of the region, or social class of the time. This classification was not used as a research tool to discover the hidden principals of the development process of traditional houses nor to attempt to restore the traditional habitation culture of the Korean peninsula.

  • PDF

기사데이터베이스의 분류항목과 데이터표시형식에 관한 비교분석 (Analysis on classification item and data display format of newspaper article database)

  • 한상길
    • 한국도서관정보학회지
    • /
    • 제23권
    • /
    • pp.329-362
    • /
    • 1995
  • Newspaper Article Information is an important source of information on social phenomenon with historical value. The development of computer and technology of information communication enables the construction of Newspaper Article Database by CTS and service through computer communication. It made it possible for the peoples to utilize the Newspaper Article Information easily. However, it is very difficult to utilize the currently prevailing system. There are differences in classification system of Newspaper Article Database and the Data Display Format. This survey aims to review the characteristics of Newspaper Article Database and current domestic computer communication service system. By comparing the classification system of Retrieval Menu and Data Display Format, I intended to suggest the standardized way of utilization which enables the users utilize them more easily and conveniently. The results of this survey is as follows : 1. More sub-divided distinction of classification item is required. 2. Separate classification item should be established for the distinction of article form which is very difficult to classify the subject. 3. Data Display Format should be equi n.0, pped with standardized format and signal which enables the users recognize it easily.

  • PDF

ICT기반 폐플라스틱 관리 전주기 기술 동향 (ICT-based Waste Plastic Management Life Cycle Technology)

  • 문영백;정훈;허태욱
    • 전자통신동향분석
    • /
    • 제37권4호
    • /
    • pp.28-35
    • /
    • 2022
  • To solve the challenge of waste plastics, this study investigated the related technologies and company trends along the plastic life cycle, and primarily describes ICT technologies to improve efficiency in the process of sorting and sorting waste plastics. Waste plastic discharge caused by the explosive increase in parcel traffic because of COVID-19 is also growing exponentially. Hence, waste treatment is emerging as a social challenge. Most of the domestic waste classification depends on the manual process according to the waste pollution level. The plastic material classification approach using the spectroscopy approach reveals a high error in the contaminated waste plastic classification, but if the Artificial Intelligence-based image classification technology is employed together, the classification precision can be enhanced because of the type of waste plastic product and the contaminated part can be differentiated.

아시아문화정보원의 문화자원 분류체계 연구 (A Study on the Classification Scheme of Cultural Resource in ACIA)

  • 이명규
    • 한국문헌정보학회지
    • /
    • 제49권1호
    • /
    • pp.319-340
    • /
    • 2015
  • 이 연구는 국립아시아문화전당 아시아문화정보원의 수집대상 문화자원을 효율적으로 관리하기 위한 분류체계를 제시하기 위하여 시도되었다. 아시아문화정보원의 목적과 수집정책 방향을 알아보고 문화자원의 특성과 범주를 파악하였다. 그리고 현재 실제로 사용하고 있는 HRAF 분류체계, UNESCO 문화지표, 민속아카이브의 분류검색, 한국향토문화전자대전의 콘텐츠목차 등 4개의 분류체계를 비교분석하였다. 이를 토대로 아시아정보원의 문화자원 분류체계의 원칙과 기준을 제시하고, 분류체계의 주제 전개는 문화적, 사회적, 자연적 영역 순으로 전개하였고, 주류는 16개의 항목으로 설정되었다.

Effects of Preprocessing on Text Classification in Balanced and Imbalanced Datasets

  • Mehmet F. Karaca
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권3호
    • /
    • pp.591-609
    • /
    • 2024
  • In this study, preprocessings with all combinations were examined in terms of the effects on decreasing word number, shortening the duration of the process and the classification success in balanced and imbalanced datasets which were unbalanced in different ratios. The decreases in the word number and the processing time provided by preprocessings were interrelated. It was seen that more successful classifications were made with Turkish datasets and English datasets were affected more from the situation of whether the dataset is balanced or not. It was found out that the incorrect classifications, which are in the classes having few documents in highly imbalanced datasets, were made by assigning to the class close to the related class in terms of topic in Turkish datasets and to the class which have many documents in English datasets. In terms of average scores, the highest classification was obtained in Turkish datasets as follows: with not applying lowercase, applying stemming and removing stop words, and in English datasets as follows: with applying lowercase and stemming, removing stop words. Applying stemming was the most important preprocessing method which increases the success in Turkish datasets, whereas removing stop words in English datasets. The maximum scores revealed that feature selection, feature size and classifier are more effective than preprocessing in classification success. It was concluded that preprocessing is necessary for text classification because it shortens the processing time and can achieve high classification success, a preprocessing method does not have the same effect in all languages, and different preprocessing methods are more successful for different languages.

공간과 시간적 특징 융합 기반 유해 비디오 분류에 관한 연구 (Using the fusion of spatial and temporal features for malicious video classification)

  • 전재현;김세민;한승완;노용만
    • 정보처리학회논문지B
    • /
    • 제18B권6호
    • /
    • pp.365-374
    • /
    • 2011
  • 최근 인터넷, IPTV/SMART TV, 소셜 네트워크 (social network)와 같은 정보 유통 채널의 다양화로 유해 비디오 분류 및 차단 기술 연구에 대한 요구가 높아가고 있으나, 현재까지는 비디오에 대한 유해성을 판단하는 연구는 부족한 실정이다. 기존 유해 이미지 분류 연구에서는 이미지에서의 피부 영역의 비율이나 Bag of Visual Words (BoVW)와 같은 공간적 특징들 (spatial features)을 이용하고 있다. 그러나, 비디오에서는 공간적 특징 이외에도 모션 반복성 특징이나 시간적 상관성 (temporal correlation)과 같은 시간적 특징들 (temporal features)을 추가적으로 이용하여 유해성을 판단할 수 있다. 기존의 유해 비디오 분류 연구에서는 공간적 특징과 시간적 특징들에서 하나의 특징만을 사용하거나 두 개의 특징들을 단순히 결정 단계에서 데이터 융합하여 사용하고 있다. 일반적으로 결정 단계 데이터 융합 방법은 특징 단계 데이터 융합 방법보다 높은 성능을 가지지 못한다. 본 논문에서는 기존의 유해 비디오 분류 연구에서 사용되고 있는 공간적 특징과 시간적 특징들을 특징 단계 융합 방법을 이용하여 융합하여 유해 비디오를 분류하는 방법을 제안한다. 실험에서는 사용되는 특징이 늘어남에 따른 분류 성능 변화와 데이터 융합 방법의 변화에 따른 분류 성능 변화를 보였다. 공간적 특징만을 이용하였을 때에는 92.25%의 유해 비디오 분류 성능을 보이는데 반해, 모션 반복성 특징을 이용하고 특징 단계 데이터 융합 방법을 이용하게 되면 96%의 향상된 분류 성능을 보였다.

기계학습을 이용한 SNS 오피니언 문서의 자동추출기법 (Automatic Retrieval of SNS Opinion Document Using Machine Learning Technique)

  • 장재영
    • 한국인터넷방송통신학회논문지
    • /
    • 제13권5호
    • /
    • pp.27-35
    • /
    • 2013
  • 최근 들어 SNS가 대중화됨에 따라, 이들로 부터 오피니언을 분석하여 특정 이슈에 대한 여론을 파악하려는 다양한 연구가 진행되고 있다. SNS 환경에서 오피니언 분석을 위해서는 우선 게시글 중에서 오피니언 문서와 그렇지 않은 문서(객관적 문서)를 분리해야한다. 본 논문에서는 트위터 문서로 부터 오피니언 문서만을 추출하는 새로운 방법을 제안한다. 트위터 환경에서 오피니언 문서에 대한 분류나 검색의 어려운 점은 충분한 학습 자료가 존재하지 않다는데 있다 이를 위해 제안된 방법에서는 감성 분류를 위해 트위터와 유사한 외부의 정보를 이용하여 기계학습기반 분류 모델을 생성하고, 이를 응용하여 트위터에서의 오피니언 문서 추출에 적용하였다. 또한 실험을 통하여 제안된 방법의 적용 가능성을 평가하였다.