• Title/Summary/Keyword: Social Big data

Search Result 1,002, Processing Time 0.022 seconds

Effects of Financial College Tuition Support by Korean Parents using a Hierarchical Bayes Model (계층적 베이즈 모형을 이용한 대학등록금에 대한 부모님의 경제적 지원 영향 분석)

  • Oh, Man-Suk;Oh, Hyun Sook;Oh, Min Jung
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.2
    • /
    • pp.267-280
    • /
    • 2013
  • College tuition is a significant economic, social, and political issue in Korea. We conduct a Bayesian analysis of a hierarchical model to address the factors related to college tuition based on a survey data collected by Statistics Korea. A binary response variable is selected depending on if more than 70% of tuition costs are supported by parents, and a hierarchical Probit model is constructed with areas as groups. A set of explanatory variables is selected from a factor analysis of available variables in the survey. A Markov chain Monte Carlo algorithm is used to estimate parameters. From the analysis results, income and stress are significantly related to college tuition support from parents. Parents with high income tend to support children's college tuition and students with parents' financial support tend to be mentally less stressed; subsequently, this shows that the economic status of parents significantly affects the mental health of college students. Gender, a healthy life style, and college satisfaction are not significant factors. Comparing areas in terms of the degrees of correlation between stress/income and tuition support from parents, students in Kangwon-do are the most mentally stressed when parents' support is limited; in addition, the positive correlation between parents support and income is stronger in big cities compared to provincial areas.

An exploratory study for the development of a education framework for supporting children's development in the convergence of "art activity" and "language activity": Focused on Text mining method ('미술'과 '언어' 활동 융합형의 아동 발달지원 교육 프레임워크 개발을 위한 탐색적 연구: 텍스트 마이닝을 중심으로)

  • Park, Yunmi;Kim, Sijeong
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.3
    • /
    • pp.297-304
    • /
    • 2021
  • This study aims not only to access the visual thought-oriented approach that has been implemented in established art therapy and education but also to integrate language education and therapeutic approach to support the development of school-age children. Thus, text mining technique was applied to search for areas where different areas of language and art can be integrated. This research was conducted in accordance with the procedure of basic research, preliminary DB construction, text screening, DB pre-processing and confirmation, stop-words removing, text mining analysis and the deduction about the convergent areas. These results demonstrated that this study draws convergence areas related to regional, communication, and learning functions, areas related to problem solving and sensory organs, areas related to art and intelligence, areas related to information and communication, areas related to home and disability, topics, conceptualization, peer-related areas, integration, reorganization, attitudes. In conclusion, this study is meaningful in that it established a framework for designing an activity-centered convergence program of art and language in the future and attempted a holistic approach to support child development.

Analysis of Borrows Demand for Books in Public Libraries Considering Cultural Characteristics (문화적 특성을 고려한 공공도서관 도서 대출수요 분석 : 대구광역시 시립도서관을 사례로)

  • Oh, Min-Ki;Kim, Kyung-Rae;Jeong, Won-Oong;Kim, Keun-Wook
    • Journal of Digital Convergence
    • /
    • v.19 no.3
    • /
    • pp.55-64
    • /
    • 2021
  • Public libraries are a space where residents learn a wide range of knowledge and ideologies, and as they are directly connected to life, various related studies have been conducted. In most previous studies, variables such as population, traffic accessibility, and environment were found to be highly relevant to library use. In this study, it can be said that the difference from previous studies is that the book borrow demand and relevance were analyzed by reflecting the variables of cultural characteristics based on the book borrow history (1,820,407 cases) and member information (297,222 persons). As a result of the analysis, it was analyzed that as the increase in borrows for social science and literature books compared to technical science books, the demand for book borrows increased. In addition, various descriptive statistical analyzes were used to analyze the characteristics of library book borrow demand, and policy implications and limitations of the study were also presented based on the analysis results. and considering that cultural characteristics change depending on the location and time of day, it is believed that related research should be continued in the future.

A Comparison Study of RNN, CNN, and GAN Models in Sequential Recommendation (순차적 추천에서의 RNN, CNN 및 GAN 모델 비교 연구)

  • Yoon, Ji Hyung;Chung, Jaewon;Jang, Beakcheol
    • Journal of Internet Computing and Services
    • /
    • v.23 no.4
    • /
    • pp.21-33
    • /
    • 2022
  • Recently, the recommender system has been widely used in various fields such as movies, music, online shopping, and social media, and in the meantime, the recommender model has been developed from correlation analysis through the Apriori model, which can be said to be the first-generation model in the recommender system field. In 2005, many models have been proposed, including deep learning-based models, which are receiving a lot of attention within the recommender model. The recommender model can be classified into a collaborative filtering method, a content-based method, and a hybrid method that uses these two methods integrally. However, these basic methods are gradually losing their status as methodologies in the field as they fail to adapt to internal and external changing factors such as the rapidly changing user-item interaction and the development of big data. On the other hand, the importance of deep learning methodologies in recommender systems is increasing because of its advantages such as nonlinear transformation, representation learning, sequence modeling, and flexibility. In this paper, among deep learning methodologies, RNN, CNN, and GAN-based models suitable for sequential modeling that can accurately and flexibly analyze user-item interactions are classified, compared, and analyzed.

Trend Analysis of Sports for All-Related Issues in Early Stage of COVID-19 Using Topic Modeling (토픽 모델링을 활용한 코로나19 초기 생활체육 이슈 분석)

  • Chung, Yunkil;Seo, Sumin;Kang, Hyunmin
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.3
    • /
    • pp.57-79
    • /
    • 2022
  • COVID-19, which started in December 2019, has had a great impact on our lives in general, including politics, economy, society, and culture, and activities in sports and arts have also been significantly reduced. In the case of sports, sports for all fields in which ordinary citizens participate were particularly affected, and cases of infection in places closely related to people's lives, such as gyms, table tennis, and badminton clubs, also amplified the social fear of the spread of COVID-19. Therefore, in this study, we analyzed news articles related to sports for all at the time when COVID-19 was first spread, and investigated what issues were emerging and being discussed in the sports for all field under the COVID-19 situation. Specifically, we collected news articles dealt with sports for all issues under the COVID-19 situation from Korea's leading portal news sites and identified key sports for all issues by performing topic modeling on these articles. Through the analysis, we found meaningful issues such as COVID-19 outbreak in sports facilities and support for sports activities. In addition, through wordcloud analysis of these major issues, we visually understood the issues and identified the changes in these issues over time.

Determinants of Long-Term Care Service Use by Elderly (노인장기요양서비스 이용형태 결정요인 연구)

  • Lee, Yun-kyung
    • 한국노년학
    • /
    • v.29 no.3
    • /
    • pp.917-933
    • /
    • 2009
  • This study examined the factors affecting forms of long-term care service use by elderly and the forms of use are classified facility care service, home care service, and unused. It is used data from the 2nd pilot program for the Long Term Care Insurance scheme and it is analysed 5,497 cases. Multi-nominal regression is used. According to the results, women use formal service more than man do, and wowen use facility care than home care. Those who eligible for National Basic Livelihood Security System(NBLSS) are shown to have higher use of formal care(especially facility care) than the middle income class, and the low income class than the middle income class has lower use of formal care. In addition, higher the family care is available, lower the taking part in the service. The big cities and mid sized cities than rural are used the formal service and moreover mid sized cities are used facility care than home care. Furthermore, the level of care need is determinants of service use and function of ADL, IADL, and abnormal behavior is also determinants of formal service(especially facility care). But nursing need and rehabilitation need are not determinants of formal service use. Based on the results, the recommendations are developed and implemented for the improvement the elderly long-term care insurance.

A Study on the Landscape Cognition of Wind Power Plant in Social Media (소셜미디어에 나타난 풍력발전시설의 경관 인식 연구)

  • Woo, Kyung-Sook;Suh, Joo-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.5
    • /
    • pp.69-79
    • /
    • 2022
  • This study aims to assess the current understanding of the landscape of wind power facilities as renewable energy sources that supply sightseeing, tourism, and other opportunities. Therefore, social media data related to the landscape of wind power facilities experienced by visitors from different regions was analyzed. The analysis results showed that the common characteristics of the landscape of wind power facilities are based on the scale of wind power facilities, the distance between overlook points of wind power facilities, the visual openness of the wind power facilities from the overlook points, and the terrain where the wind power facilities are located. In addition, the preference for wind power facilities is higher in places where the shape of wind power facilities and the surrounding landscape can be clearly seen- flat ground or the sea are considered better landscapes. Negative keywords about the landscape appear on Gade Mountain in Taibai, Meifeng Mountain in Taibai, Taiqi Mountain, and Gyeongju Wind Power Generation Facilities on Gyeongshang Road in Gangwon. The keyword 'negation' occurs when looking at wind power facilities at close range. Because of the high angle of the view, viewers can feel overwhelmed seeing the size of the facility and the ridge simultaneously, feeling psychological pressure. On the contrary, positive landscape adjectives are obtained from wind power facilities on flat ground or the sea. Visitors think that the visual volume of the landscape is fully ensured on flat ground or the sea, and it is a symbolic element that can represent the site. This study analyzes landscape awareness based on the opinions of visitors who have experienced wind power facilities. However, wind power facilities are built in different areas. Therefore, landscape characteristics are different, and there are many variables, such as viewpoints and observers, so the research results are difficult to popularize and have limitations. In recent years, landscape damage due to the construction of wind power facilities has become a hot issue, and the domestic methods of landscape evaluation of wind power facilities are unsatisfactory. Therefore, when evaluating the landscape of wind power facilities, the scale of wind power facilities, the inherent natural characteristics of the area where wind power facilities are set up, and the distance between wind power facilities and overlook points are important elements to consider. In addition, wind power facilities are set in the natural environment, which needs to be protected. Therefore, from the landscape perspective, it is necessary to study the landscape of wind power facilities and the surrounding environment.

Methodology for Identifying Issues of User Reviews from the Perspective of Evaluation Criteria: Focus on a Hotel Information Site (사용자 리뷰의 평가기준 별 이슈 식별 방법론: 호텔 리뷰 사이트를 중심으로)

  • Byun, Sungho;Lee, Donghoon;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.23-43
    • /
    • 2016
  • As a result of the growth of Internet data and the rapid development of Internet technology, "big data" analysis has gained prominence as a major approach for evaluating and mining enormous data for various purposes. Especially, in recent years, people tend to share their experiences related to their leisure activities while also reviewing others' inputs concerning their activities. Therefore, by referring to others' leisure activity-related experiences, they are able to gather information that might guarantee them better leisure activities in the future. This phenomenon has appeared throughout many aspects of leisure activities such as movies, traveling, accommodation, and dining. Apart from blogs and social networking sites, many other websites provide a wealth of information related to leisure activities. Most of these websites provide information of each product in various formats depending on different purposes and perspectives. Generally, most of the websites provide the average ratings and detailed reviews of users who actually used products/services, and these ratings and reviews can actually support the decision of potential customers in purchasing the same products/services. However, the existing websites offering information on leisure activities only provide the rating and review based on one stage of a set of evaluation criteria. Therefore, to identify the main issue for each evaluation criterion as well as the characteristics of specific elements comprising each criterion, users have to read a large number of reviews. In particular, as most of the users search for the characteristics of the detailed elements for one or more specific evaluation criteria based on their priorities, they must spend a great deal of time and effort to obtain the desired information by reading more reviews and understanding the contents of such reviews. Although some websites break down the evaluation criteria and direct the user to input their reviews according to different levels of criteria, there exist excessive amounts of input sections that make the whole process inconvenient for the users. Further, problems may arise if a user does not follow the instructions for the input sections or fill in the wrong input sections. Finally, treating the evaluation criteria breakdown as a realistic alternative is difficult, because identifying all the detailed criteria for each evaluation criterion is a challenging task. For example, if a review about a certain hotel has been written, people tend to only write one-stage reviews for various components such as accessibility, rooms, services, or food. These might be the reviews for most frequently asked questions, such as distance between the nearest subway station or condition of the bathroom, but they still lack detailed information for these questions. In addition, in case a breakdown of the evaluation criteria was provided along with various input sections, the user might only fill in the evaluation criterion for accessibility or fill in the wrong information such as information regarding rooms in the evaluation criteria for accessibility. Thus, the reliability of the segmented review will be greatly reduced. In this study, we propose an approach to overcome the limitations of the existing leisure activity information websites, namely, (1) the reliability of reviews for each evaluation criteria and (2) the difficulty of identifying the detailed contents that make up the evaluation criteria. In our proposed methodology, we first identify the review content and construct the lexicon for each evaluation criterion by using the terms that are frequently used for each criterion. Next, the sentences in the review documents containing the terms in the constructed lexicon are decomposed into review units, which are then reconstructed by using the evaluation criteria. Finally, the issues of the constructed review units by evaluation criteria are derived and the summary results are provided. Apart from the derived issues, the review units are also provided. Therefore, this approach aims to help users save on time and effort, because they will only be reading the relevant information they need for each evaluation criterion rather than go through the entire text of review. Our proposed methodology is based on the topic modeling, which is being actively used in text analysis. The review is decomposed into sentence units rather than considering the whole review as a document unit. After being decomposed into individual review units, the review units are reorganized according to each evaluation criterion and then used in the subsequent analysis. This work largely differs from the existing topic modeling-based studies. In this paper, we collected 423 reviews from hotel information websites and decomposed these reviews into 4,860 review units. We then reorganized the review units according to six different evaluation criteria. By applying these review units in our methodology, the analysis results can be introduced, and the utility of proposed methodology can be demonstrated.

Analysis of Behavioral Characteristics by Park Types Displayed in 3rd Generation SNS (제3세대 SNS에 표출된 공원 유형별 이용 특성 분석)

  • Kim, Ji-Eun;Park, Chan;Kim, Ah-Yeon;Kim, Ho Gul
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.47 no.2
    • /
    • pp.49-58
    • /
    • 2019
  • There have been studies on the satisfaction, preference, and post occupancy evaluation of urban parks in order to reflect users' preferences and activities, suggesting directions for future park planning and management. Despite using questionnaires that are proven to be affective to get users' opinions directly, there haven been limitations in understanding the latest changes in park use through questionnaires. This study seeks to address the possibility of utilizing the thirdgeneration SNS data, Instagram and Google, to compare behavior patterns and trends in park activities. Instagram keywords and photos representing user's feelings with a specific park name were collected. We also examined reviews, peak time, and popular time zones regarding selected parks through Google. This study tries to analyze users' behaviors, emerging activities, and satisfaction using SNS data. The findings are as follows. People using park near residential areas tend to enjoy programs being operated in indoor facilities and to like to use picnic places. In an adjacent park of commercial areas, eating in the park and extended areas beyond the park boundaries is found to be one of the popular park activities. Programs using open spaces and indoor facilities were active as well. Han River Park as a detached park type offers a popular venue for excercises and scenery appreciation. We also identified companionship characteristics of different park types from texts and photos, and extracted keywords of feelings and reviews about parks posted in $3^{rd}$ generation SNS. SNS data can provide basis to grasp behavioral patterns and satisfaction factors, and changes of park activities in real time. SNS data also can be used to set future directions in park planning and management in accordance with new technologies and policies.

Text Mining-Based Emerging Trend Analysis for e-Learning Contents Targeting for CEO (텍스트마이닝을 통한 최고경영자 대상 이러닝 콘텐츠 트렌드 분석)

  • Kyung-Hoon Kim;Myungsin Chae;Byungtae Lee
    • Information Systems Review
    • /
    • v.19 no.2
    • /
    • pp.1-19
    • /
    • 2017
  • Original scripts of e-learning lectures for the CEOs of corporation S were analyzed using topic analysis, which is a text mining method. Twenty-two topics were extracted based on the keywords chosen from five-year records that ranged from 2011 to 2015. Research analysis was then conducted on various issues. Promising topics were selected through evaluation and element analysis of the members of each topic. In management and economics, members demonstrated high satisfaction and interest toward topics in marketing strategy, human resource management, and communication. Philosophy, history of war, and history demonstrated high interest and satisfaction in the field of humanities, whereas mind health showed high interest and satisfaction in the field of in lifestyle. Studies were also conducted to identify topics on the proportion of content, but these studies failed to increase member satisfaction. In the field of IT, educational content responds sensitively to change of the times, but it may not increase the interest and satisfaction of members. The present study found that content production for CEOs should draw out deep implications for value innovation through technology application instead of simply ending the technical aspect of information delivery. Previous studies classified contents superficially based on the name of content program when analyzing the status of content operation. However, text mining can derive deep content and subject classification based on the contents of unstructured data script. This approach can examine current shortages and necessary fields if the service contents of the themes are displayed by year. This study was based on data obtained from influential e-learning companies in Korea. Obtaining practical results was difficult because data were not acquired from portal sites or social networking service. The content of e-learning trends of CEOs were analyzed. Data analysis was also conducted on the intellectual interests of CEOs in each field.