• Title/Summary/Keyword: Social Big data

Search Result 1,002, Processing Time 0.024 seconds

A Study on the Meaning of The First Slam Dunk Based on Text Mining and Semantic Network Analysis

  • Kyung-Won Byun
    • International journal of advanced smart convergence
    • /
    • v.12 no.1
    • /
    • pp.164-172
    • /
    • 2023
  • In this study, we identify the recognition of 'The First Slam Dunk', which is gaining popularity as a sports-based cartoon through big data analysis of social media channels, and provide basic data for the development and development of various contents in the sports industry. Social media channels collected detailed social big data from news provided on Naver and Google sites. Data were collected from January 1, 2023 to February 15, 2023, referring to the release date of 'The First Slam Dunk' in Korea. The collected data were 2,106 Naver news data, and 1,019 Google news data were collected. TF and TF-IDF were analyzed through text mining for these data. Through this, semantic network analysis was conducted for 60 keywords. Big data analysis programs such as Textom and UCINET were used for social big data analysis, and NetDraw was used for visualization. As a result of the study, the keyword with the high frequency in relation to the subject in consideration of TF and TF-IDF appeared 4,079 times as 'The First Slam Dunk' was the keyword with the high frequency among the frequent keywords. Next are 'Slam Dunk', 'Movie', 'Premiere', 'Animation', 'Audience', and 'Box-Office'. Based on these results, 60 high-frequency appearing keywords were extracted. After that, semantic metrics and centrality analysis were conducted. Finally, a total of 6 clusters(competing movie, cartoon, passion, premiere, attention, Box-Office) were formed through CONCOR analysis. Based on this analysis of the semantic network of 'The First Slam Dunk', basic data on the development plan of sports content were provided.

A Study on Big Data-Based Analysis of Risk Factors for Depression in Adolescents

  • Chun-Ok Jang
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.4
    • /
    • pp.449-455
    • /
    • 2023
  • The purpose of this study is to explore adolescent depression, increase understanding of social problems, and develop prevention and intervention strategies. As a research method, social big data was used to collect information related to 'youth depression', and related factors were identified through data mining and analysis of related rules. We used 'Sometrend Biz Tool' to collect and clean data from the web and then analyzed data in various languages. The study found that online articles about depression decreased during the school holidays (January to March), then increased from March to the end of June, and then decreased again from July. Therefore, it is important to establish a government-wide depression management monitoring system that can detect risk signs of adolescent depression in real time. In addition, regular stress relief and mental health education are needed during the semester, and measures must be prepared to deal with at-risk youth who share their depressed feelings in cyberspace. Results from these studies can be expected to provide important information in investigating and preventing youth depression and to contribute to policy development and intervention.

A Study on the Application of SNS Big Data to the Industry in the Fourth Industrial Revolution (제4차 산업혁명에서 SNS 빅데이터의 외식산업 활용 방안에 대한 연구)

  • Han, Soon-lim;Kim, Tae-ho;Lee, Jong-ho;Kim, Hak-Seon
    • Culinary science and hospitality research
    • /
    • v.23 no.7
    • /
    • pp.1-10
    • /
    • 2017
  • This study proposed SNS big data analysis method of food service industry in the 4th industrial revolution. This study analyzed the keyword of the fourth industrial revolution by using Google trend. Based on the data posted on the SNS from January 1, 2016 to September 5, 2017 (1 year and 8 months) utilizing the "Social Metrics". Through the social insights, the related words related to cooking were analyzed and visualized about attributes, products, hobbies and leisure. As a result of the analysis, keywords were found such as cooking, entrepreneurship, franchise, restaurant, job search, Twitter, family, friends, menu, reaction, video, etc. As a theoretical implication of this study, we proposed how to utilize big data produced from various online materials for research on restaurant business, interpret atypical data as meaningful data and suggest the basic direction of field application. In order to utilize positioning of customers of restaurant companies in the future, this study suggests more detailed and in-depth consumer sentiment as a basic resource for marketing data development through various menu development and customers' perception change. In addition, this study provides marketing implications for the foodservice industry and how to use big data for the cooking industry in preparation for the fourth industrial revolution.

Study of Mental Disorder Schizophrenia, based on Big Data

  • Hye-Sun Lee
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.4
    • /
    • pp.279-285
    • /
    • 2023
  • This study provides academic implications by considering trends of domestic research regarding therapy for Mental disorder schizophrenia and psychosocial. For the analysis of this study, text mining with the use of R program and social network analysis method have been used and 65 papers have been collected The result of this study is as follows. First, collected data were visualized through analysis of keywords by using word cloud method. Second, keywords such as intervention, schizophrenia, research, patients, program, effect, society, mind, ability, function were recorded with highest frequency resulted from keyword frequency analysis. Third, LDA (latent Dirichlet allocation) topic modeling result showed that classified into 3 keywords: patient, subjects, intervention of psychosocial, efficacy of interventions. Fourth, the social network analysis results derived connectivity, closeness centrality, betweennes centrality. In conclusion, this study presents significant results as it provided basic rehabilitation data for schizophrenia and psychosocial therapy through new research methods by analyzing with big data method by proposing the results through visualization from seeking research trends of schizophrenia and psychosocial therapy through text mining and social network analysis.

Suggested social media big data consulting chatbot service for restaurant start-ups

  • Jong-Hyun Park;Jun-Ho Park;Ki-Hwan Ryu
    • International journal of advanced smart convergence
    • /
    • v.12 no.3
    • /
    • pp.68-74
    • /
    • 2023
  • The food industry has been hit hard since the first outbreak of COVID-19 in 2019. However, as of April 2022, social distancing has been resolved and the restaurant industry has gradually recovered, interest in restaurant start-ups is increasing. Therefore, in this paper, 'restaurant start-up' was cited as a key keyword through social media big data analysis using TexTom, and word frequency and cone analysis were conducted for big data analysis. The keyword collection period was selected from May 1, 2022, when social distancing due to COVID-19 was lifted, to May 23, 2023, and based on this, a plan to develop chatbot services for restaurant start-ups was proposed. This paper was prepared in consideration of what to consider when starting a restaurant and a chatbot service that allows prospective restaurant founders to receive information more conveniently. Based on these analysis results, we expected to contribute to the process of developing chatbots for prospective restaurant founders in the future

A Meta Analysis of Innovation Diffusion Theory based on Behavioral Intention of Consumer (혁신확산이론 기반 소비자 행위의도에 관한 메타분석)

  • Nam, Soo-Tai;Kim, Do-Goan;Jin, Chan-Yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.140-141
    • /
    • 2017
  • Big data analysis, in the large amount of data stored as the data warehouse which it refers the process of discovering meaningful new correlations, patterns, trends and creating new values. Thus, Big data analysis is an effective analysis of various big data that exist all over the world such as social big data, machine to machine (M2M) sensor data, and corporate customer relationship management data. In the big data era, it has become more important to effectively analyze not only structured data that is well organized in the database, but also unstructured big data such as the internet, social network services, and explosively generated web documents, e-mails, and social data in mobile environments. By the way, a meta analysis refers to a statistical literature synthesis method from the quantitative results of many known empirical studies. We reviewed a total of 750 samples among 50 studies published on the topic related as IDT between 2000 and 2017 in Korea.

  • PDF

Analysis of problems caused by Big Data's private information handling (빅데이터 개인정보 취급에 따른 문제점 분석)

  • Choi, Hee Sik;Cho, Yang Hyun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.1
    • /
    • pp.89-97
    • /
    • 2014
  • Recently, spread of Smartphones caused activation of mobile services, because of that Big Data such as clouding service able to proceed with large amount of data which are hard to collect, save, search and analyze. Many companies collected variety of private and personal information without users' agreement for their business strategy and marketing. This situation raised social issues. As companies use Big Data, numbers of damage cases are growing. In this Thesis, when Big Data process, methods of analyze and research of data are very important. This thesis will suggest that choices of security levels and algorithms are important for security of private informations. To use Big Data, it has to encrypt the personal data to emphasize the importance of security level and selection of algorithm. Thesis will also suggest that research of utilization of Big Data and protection of private informations and making guidelines for users are require for security of private information and activation of Big Data industries.

Utilization of Social Media Analysis using Big Data (빅 데이터를 이용한 소셜 미디어 분석 기법의 활용)

  • Lee, Byoung-Yup;Lim, Jong-Tae;Yoo, Jaesoo
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.2
    • /
    • pp.211-219
    • /
    • 2013
  • The analysis method using Big Data has evolved based on the Big data Management Technology. There are quite a few researching institutions anticipating new era in data analysis using Big Data and IT vendors has been sided with them launching standardized technologies for Big Data management technologies. Big Data is also affected by improvements of IT gadgets IT environment. Foreran by social media, analyzing method of unstructured data is being developed focusing on diversity of analyzing method, anticipation and optimization. In the past, data analyzing methods were confined to the optimization of structured data through data mining, OLAP, statics analysis. This data analysis was solely used for decision making for Chief Officers. In the new era of data analysis, however, are evolutions in various aspects of technologies; the diversity in analyzing method using new paradigm and the new data analysis experts and so forth. In addition, new patterns of data analysis will be found with the development of high performance computing environment and Big Data management techniques. Accordingly, this paper is dedicated to define the possible analyzing method of social media using Big Data. this paper is proposed practical use analysis for social media analysis through data mining analysis methodology.

Study on Application of Big Data in Packaging (패키징(Packaging) 분야에서의 빅데이터(Big data) 적용방안 연구)

  • Kang, WookGeon;Ko, Euisuk;Shim, Woncheol;Lee, Hakrae;Kim, Jaineung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.23 no.3
    • /
    • pp.201-209
    • /
    • 2017
  • The Big Data, the element of the Fourth Industrial Revolution, is drawing attention as the 4th Industrial Revolution is mentioned in the 2016 World Economic Forum. Big Data is being used in various fields because it predicts the near future and can create new business. However, utilization and research in the field of packaging are lacking. Today packaging has been demanded marketing elements that effect on consumer choice. Big data is actively used in marketing. In the marketing field, big data can be used to analyze sales information and consumer reactions to produce meaningful results. Therefore, this study proposed a method of applying big data in the field of packaging focusing on marketing. In this study suggest that try to utilize the private data and community data to analyze interaction between consumers and products. Using social big data will enable to understand the preferred packaging and consumer perceptions and emotions in the same product line. It can also be used to analyze the effects of packaging among various components of the product. Packaging is one of the many components of the product. Therefore, it is not easy to understand the impact of a single packaging element. However, this study presents the possibility of using Big Data to analyze the perceptions and feelings of consumers about packaging.

A Trend Analysis on E-sports using Social Big Data

  • Kyoung Ah YEO;Min Soo KIM
    • Journal of Sport and Applied Science
    • /
    • v.8 no.1
    • /
    • pp.11-17
    • /
    • 2024
  • Purpose: The purpose of the study was to understand a trend of esports in terms of gamers' and fans' perceptions toward esports using social big data. Research design, data, and methodology: In this study, researchers first selected keywords related to esports. Then a total of 10,138 buzz data created at twitter, Facebook, news media, blogs, café and community between November 10, 2022 and November 19, 2023 were collected and analyzed with 'Textom', a big data solution. Results: The results of this study were as follows. Firstly, the news data's main articles were about competitions hosted by local governments and policies to revitalize the gaming industry. Secondly, As a result of esports analysis using Textom, there was a lot of interest in the adoption of the Hangzhou Asian Games as an official event and various esports competitions. As a result of the sentiment analysis, the positive content was related to the development potential of the esports industry, and the negative content was a discussion about the fundamental problem of whether esports is truly a sport. Thirdly, As a result of analyzing social big data on esports and the Olympics, there was hope that it would be adopted as an official event in the Olympics due to its adoption as an official event in the Hangzhou Asian Games. Conclusions: There was a positive opinion that the adoption of esports as an official Olympic event had positive content that could improve the quality of the game, and a negative opinion that games with actions that violate the Olympic spirit, such as murder and assault, should not be adopted as an official Olympic event. Further implications were discussed.