• 제목/요약/키워드: Sobolev orthogonal polynomials

검색결과 5건 처리시간 0.017초

SOBOLEV ORTHOGONAL POLYNOMIALS RELATIVE TO ${\lambda}$p(c)q(c) + <${\tau}$,p'(x)q'(x)>

  • Jung, I.H.;Kwon, K.H.;Lee, J.K.
    • 대한수학회논문집
    • /
    • 제12권3호
    • /
    • pp.603-617
    • /
    • 1997
  • Consider a Sobolev inner product on the space of polynomials such as $$ \phi(p,q) = \lambda p(c)q(c) + <\tau,p'(x)q'(x)> $$ where $\tau$ is a moment functional and c and $\lambda$ are real constants. We investigate properties of orthogonal polynomials relative to $\phi(\cdot,\cdot)$ and give necessary and sufficient conditions under which such Sobolev orthogonal polynomials satisfy a spectral type differential equation with polynomial coefficients.

  • PDF

Sobolev orthogonal polynomials and second order differential equation II

  • Kwon, K.H.;Lee, D.W.;Littlejohn, L.L.
    • 대한수학회보
    • /
    • 제33권1호
    • /
    • pp.135-170
    • /
    • 1996
  • Recently many people have studied the Sobolev orthogonal polynomials, that is, polynomials which are orthogonal relative to a symmetric bilinear form $\phi(\cdot,\cdot)$ defined by $$ (1.1) $\phi(p,q) := (p,q)_N = \sum_{k=0}^{N} \int_{R}p^(k) (x)q^(k) (x) d\mu_k, $$ where each $d\mu_k$ is a signed Borel measure on the real line $R$ with finite moments of all orders. For the brief history on this subject, we refer to the survey article Ronveaux [13] and Marcellan and et al [10].

  • PDF

DISCRETE SOBOLEV ORTHOGONAL POLYNOMIALS AND SECOND ORDER DIFFERENCE EQUATIONS

  • Jung, H.S.;Kwon, K.H.;Lee, D.W.
    • 대한수학회지
    • /
    • 제36권2호
    • /
    • pp.381-402
    • /
    • 1999
  • Let {Rn($\chi$)}{{{{ { } atop {n=0} }}}} be a discrete Sobolev orthogonal polynomials (DSOPS) relative to a symmetric bilinear form (p,q)={{{{ INT _{ } }}}} pqd$\mu$0 +{{{{ INT _{ } }}}} p qd$\mu$1, where d$\mu$0 and d$\mu$1 are signed Borel measures on . We find necessary and sufficient conditions for {Rn($\chi$)}{{{{ { } atop {n=0} }}}} to satisfy a second order difference equation 2($\chi$) y($\chi$)+ 1($\chi$) y($\chi$)= ny($\chi$) and classify all such {Rn($\chi$)}{{{{ { } atop {n=0} }}}}. Here, and are forward and backward difference operators defined by f($\chi$) = f($\chi$+1) - f($\chi$) and f($\chi$) = f($\chi$) - f($\chi$-1).

  • PDF

A non-standard class of sobolev orthogonal polynomials

  • Han, S.S.;Jung, I.H.;Kwon, K.H.;Lee, J.K..
    • 대한수학회논문집
    • /
    • 제12권4호
    • /
    • pp.935-950
    • /
    • 1997
  • When $\tau$ is a quasi-definite moment functional on P, the vector space of all real polynomials, we consider a symmetric bilinear form $\phi(\cdot,\cdot)$ on $P \times P$ defined by $$ \phi(p,q) = \lambad p(a)q(a) + \mu p(b)q(b) + <\tau,p'q'>, $$ where $\lambda,\mu,a$, and b are real numbers. We first find a necessary and sufficient condition for $\phi(\cdot,\cdot)$ and show that such orthogonal polynomials satisfy a fifth order differential equation with polynomial coefficients.

  • PDF

q-SOBOLEV ORTHOGONALITY OF THE q-LAGUERRE POLYNOMIALS {Ln(-N)(·q)}n=0 FOR POSITIVE INTEGERS N

  • Moreno, Samuel G.;Garcia-Caballe, Esther M.
    • 대한수학회지
    • /
    • 제48권5호
    • /
    • pp.913-926
    • /
    • 2011
  • The family of q-Laguerre polynomials $\{L_n^{(\alpha)}({\cdot};q)\}_{n=0}^{\infty}$ is usually defined for 0 < q < 1 and ${\alpha}$ > -1. We extend this family to a new one in which arbitrary complex values of the parameter ${\alpha}$ are allowed. These so-called generalized q-Laguerre polynomials fulfil the same three term recurrence relation as the original ones, but when the parameter ${\alpha}$ is a negative integer, no orthogonality property can be deduced from Favard's theorem. In this work we introduce non-standard inner products involving q-derivatives with respect to which the generalized q-Laguerre polynomials $\{L_n^{(-N)}({\cdot};q)\}_{n=0}^{\infty}$, for positive integers N, become orthogonal.