• Title/Summary/Keyword: Sobel Edge Enhancement

Search Result 12, Processing Time 0.022 seconds

Detection of Edge on Radar Image (레이다 영상의 경계 검출)

  • 윤동한;최갑석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.12 no.4
    • /
    • pp.405-413
    • /
    • 1987
  • In this paper, we have discussed three-type median filters(SQUARE, CROSS, X-SHAPE) that preserving edge in an original image while reducing random noise was introduced for image enhancement and edge detection on radar image. Since radar image have a number of parts of curve, we compared results produced by edge detection operater proposed for improving the parts of curve with results of using the existing edge detection methods, such as Roberts, Sobel, Prewitt, Laplacian and Kirsch.

  • PDF

A Study on Mask-based Edge Detection Algorithm using Morphology (모폴로지를 이용한 마스크 기반 에지 검출 알고리즘에 관한 연구)

  • Lee, Chang-Young;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.10
    • /
    • pp.2441-2449
    • /
    • 2015
  • In this digital information era, utilization of images are essential for various media, and the edge is an important characteristical information of an object in images that includes the size, location, direction and etc. Many domestic and international studies are being conducted in order to detect these edge. Existing edge detection methods include Sobel, Prewitt, Roberts, Laplacian, LoG and etc. which apply fixed weight value. As these existing edge detection methods apply fixed weight mask to the image, edge detection characteristic appears slightly insufficient. Accordingly, in order to supplement these problems, this study used bottom-hat transformation from mathematical morphology and opening operation in improving the image and proposed an algorithm that detects for the edge after calculating mask-based gradient. And to evaluate the performance of the proposed algorithm, a comparison was made against the existing Sobel, Roberts, Prewitt, Laplacian, LoG edge detection methods, in illustrating visual images, and similarities were compared by calculating the MSE value based on the standard of each image.

Automated radiation field edge detection in portal image using optimal threshold value (최적 문턱치 설정을 이용한 포탈영상에서의 자동 에지탐지 기법에 관한 연구)

  • 허수진
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.3
    • /
    • pp.337-344
    • /
    • 1995
  • Because of the high energy of the treatment beam, contrast of portal films is very poor. Many image processing techniques have been applied to the portal images but a significant drawback is the loss of definition on the edges of the treatment field. Analysis of this problem shows that it may be remedied by separating the treatment field from the background prior to enhancement and uslng only the pixels within the field boundary in the enhancement procedure. A new edge extraction algorithm for accurate extraction of the radiation field boundary from portal Images has been developed for contrast enhancement of portal images. In this paper, portal image segmentation algorithm based on Sobel filtration, labelling processes and morphological thinning has been presented. This algorithm could automatically search the optimal threshold value which is sensitive to the variation of the type and quality of portal images.

  • PDF

EDMFEN: Edge detection-based multi-scale feature enhancement Network for low-light image enhancement

  • Canlin Li;Shun Song;Pengcheng Gao;Wei Huang;Lihua Bi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.980-997
    • /
    • 2024
  • To improve the brightness of images and reveal hidden information in dark areas is the main objective of low-light image enhancement (LLIE). LLIE methods based on deep learning show good performance. However, there are some limitations to these methods, such as the complex network model requires highly configurable environments, and deficient enhancement of edge details leads to blurring of the target content. Single-scale feature extraction results in the insufficient recovery of the hidden content of the enhanced images. This paper proposed an edge detection-based multi-scale feature enhancement network for LLIE (EDMFEN). To reduce the loss of edge details in the enhanced images, an edge extraction module consisting of a Sobel operator is introduced to obtain edge information by computing gradients of images. In addition, a multi-scale feature enhancement module (MSFEM) consisting of multi-scale feature extraction block (MSFEB) and a spatial attention mechanism is proposed to thoroughly recover the hidden content of the enhanced images and obtain richer features. Since the fused features may contain some useless information, the MSFEB is introduced so as to obtain the image features with different perceptual fields. To use the multi-scale features more effectively, a spatial attention mechanism module is used to retain the key features and improve the model performance after fusing multi-scale features. Experimental results on two datasets and five baseline datasets show that EDMFEN has good performance when compared with the stateof-the-art LLIE methods.

Medical Image Enhancement Using an Adaptive Nonlinear Histogram Stretching (적응적 비선형 히스트그램 스트레칭을 이용한 의료영상의 화질향상)

  • Kim, Seung-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.658-665
    • /
    • 2015
  • In the production of medical images, noise reduction and contrast enhancement are important methods to increase qualities of processing results. By using the edge-based denoising and adaptive nonlinear histogram stretching, a novel medical image enhancement algorithm is proposed. First, a medical image is decomposed by wavelet transform, and then all high frequency sub-images are decomposed by Haar transform. At the same time, edge detection with Sobel operator is performed. Second, noises in all high frequency sub-images are reduced by edge-based soft-threshold method. Third, high frequency coefficients are further enhanced by adaptive weight values in different sub-images. Finally, an adaptive nonlinear histogram stretching method is applied to increase the contrast of resultant image. Experimental results show that the proposed algorithm can enhance a low contrast medical image while preserving edges effectively without blurring the details.

Edge Detection of Sonogram Using Sobel Operator (Sobel 연산자를 이용한 초음파 영상의 경계선 검출)

  • Choi, Gui-Rack;Lee, Jun-Hang
    • Journal of the Korean Society of Radiology
    • /
    • v.2 no.2
    • /
    • pp.17-21
    • /
    • 2008
  • Image quality is improved if the high frequency domains of boundary surface are made distinct. We suggested a method of correcting indistinct defects in ultrasonic images resulting from dynamic imaging. According to the results of the experiment, boundaries in input ultrasonic images became distinct. However, we need to solve the problem that information on pixels of low signal intensity adjacent to boundaries is lost because high-frequency components in the boundaries are strong.

  • PDF

An effective edge detection method for noise images based on linear model and standard deviation (선형모형과 표준편차에 기반한 잡음영상에 효과적인 에지 검출 방법)

  • Park, Youngho
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.6
    • /
    • pp.813-821
    • /
    • 2020
  • Recently, research using unstructured data such as images and videos has been actively conducted in various fields. Edge detection is one of the most useful image enhancement techniques to improve the quality of the image process. However, it is very difficult to perform edge detection in noise images because the edges and noise having high frequency components. This paper uses a linear model and standard deviation as an effective edge detection method for noise images. The edge is detected by the difference between the standard deviation of the pixels included in the pixel block and the standard deviation of the residual obtained by fitting the linear model. The results of edge detection are compared with the results of the Sobel edge detector. In the original image, the Sobel edge detection result and the proposed edge detection result are similar. Proposed method was confirmed that the edge with reduced noise was detected in the various levels of noise images.

Edge Detection of Characters on the Rubber Tire Image Using Fuzzy $\alpha-Cut$ Set (퍼지 $\alpha$ 컷 집합에 의한 고무 타이어 영상의 문자 윤관선 추출)

  • 김경민;박중조;박귀태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.6
    • /
    • pp.71-80
    • /
    • 1994
  • The purpose of this paper is to explore the use of fuzzy set theory for image processing and analysis. As an application example, the fuzzy method of edge detection is proposed to extract the edges of raised characters on tires.In general, Sobel, Prewitt, Robert and LoG filters are used to detect the edge, but it is difficult to detect the edge because of ambiguity of representations, noise and general problems in the interpretation of tire image. Therefore, in his paper, the fuzzy property plane has been extracted from the spatial domain using the ramp-mapping function. And then the ideas of fuzzy MIN and MAX are applied in removing noise and enhancement of the image simultaneously. From the result of MIN and MAX procedure a new fuzzy singleton is generated by extracting the difference between adjacent membership function values. And the edges are extracted by applying fuzzy $\alpha$-cut set to the fuzzy singletion, Finally, these ideas are applied to the tire images.

  • PDF

Edge Characteristic of Error Diffused Halftoning Image with Pre-filter (전처리 필터를 추가한 오차확산 하프토닝 영상의 에지 특성)

  • Kang, Tae-Ha;Hwang, Byong-Won
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.4
    • /
    • pp.20-28
    • /
    • 2000
  • The error diffusion algorithm is good for reproducing continuous image to binary image. However the reproduction of edge characteristic is weak in power spectrum analysts of display error. In this paper, an error diffusion method which include pre-filter algorithm for edge characteristic enhancement is proposed Pre-filter algorithm is organized horizontal and vertical directional differential value and weighting function of pre-filter First, it is obtained the horizontal and vertical differential value from the peripheral pixels in original image using $3{\times}3$ Sobel operator Secondly weighting function of pre-filter is composed by function including absolute value and sign of differential value The improved Error diffusion algorithm using pre-filter, present a good result visually which edge characteristic is enhanced. The difference between orignal image and halftoning image is compared with edge-enhanced error diffusion algorithm by measuring the radially averaged power spectrum density.

  • PDF